SMASH PRODUCT ALGEBRAS AND INVARIANT ALGEBRAS

Kang Ju Min and Jun Seok Park

Abstract

Let H and G be finite dimensional semisimple Hopf algebras and let A and B be left H and G-module algebras respectively. We use smash product algebras to show that 1) if A is right Artinian then A^{H} is right Artinian, 2) Soc $V_{A} \subset$ Soc $V_{A^{H}}$ and rad $\left.V_{A} \supset \operatorname{rad} V_{A^{H}}, 3\right) K \operatorname{dim}_{B} V_{A}=K \operatorname{dim}_{B^{G}} V_{A^{H}}$.

Throughout we let k be a field. Tensor products are assumed to be over k unless stated otherwise. Let H be a Hopf algebra over a field k. We let Δ be the comultiplicatin and we will use the sigma notation, $\Delta: H \rightarrow H \otimes H, \Delta(h)=\Sigma_{(h)} h_{1} \otimes h_{2}$. Let ϵ be the counit and S be the antipode of H.

An algebra A is said to be a left H-module algebra if
(1) A is a left H-module, via $h \otimes a \mapsto h \cdot a$
(2) $h \cdot(a b)=\Sigma\left(h_{1} \cdot a\right)\left(h_{2} \cdot b\right)$
(3) $h \cdot 1_{A}=\epsilon(h) 1_{A}$ for all $h \in H$ and for all $a, b \in A$.

Let A be a left H-module algebra then the smash product algebra $A \# H$ is defined as follows: For all $a, b \in A$ and for all $h, k \in H$,
(1) as k-spaces, $A \# H=A \otimes H$. We write $a \# h$ for the element $a \otimes h$.
(2) multiplication is given by

This paper was supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1994, Project No. 94-1427.

Received by the editors on June 30, 1995.
1991 Mathematics subject classifications: Primary 16S40.

$$
(a \# h)(b \# k)=\Sigma a\left(h_{1} \cdot b\right) \# h_{2} k
$$

We show that $A \cong A \# 1$ and $H \cong 1 \# H$; for this reason we frequently abbrivate the element $a \# h$ by ah.

Remark. Let H be a group algebra $k G$ and let A be a H-module algebra. Since $\Delta g=g \otimes g$ for $g \in G, g \cdot(a b)=(g \cdot a)(g \cdot b)$ for all $a, b \in A$ and thus g acts as andomorphism of A. In addition, each g acts as an automorphism of A since $g^{-1} g=1$. Thus we have a group homomorphism $G \longrightarrow A u t_{k} A$. Conversely, any such map makes A into a $k G$-module algebra. In this case $A \# k G=A * G$ is the skew group ring. The multiplication in $A \# k G$ is just $(a g)(b h)=$ $(a \# g)(b \# h)=a(g \cdot b) g h=a b^{g^{-1}} g h$.

We extend some arguments for the skew group rings to finite dimensional Hopf algebras. If H is a finite dimensional Hopf algebra then the left integral of $H, \int_{H}^{l}=\{t \in H \mid h t=\epsilon(h) t$, for all $h \in H\}$, is one dimensional [LS]. Choose $0 \neq t \in \int_{H}^{l}$. Let A be a left H-module algebra and let $A^{H}=\{a \in A \mid h \cdot a=\epsilon(h) a$ for all $h \in H\}$. Then the map $\hat{t}: A \rightarrow A$ given by $\hat{t}(a)=t \cdot a$ is an A^{H}-bimodule map with values in A^{H}.

Lemma 1 [CFM]. Let H be finite dimensional acting on A and assume that $\hat{t}: A \rightarrow A^{H}$ is surjective. Then there exists a nonzero idempotent $e \in A \# H$ such that $e(A \# H) e=A^{H} e \cong A^{H}$.

If \hat{t} is surjective, there exists $c \in A$ with $\hat{t}(c)=t \cdot c=1$. Define $e=t c$ then $e^{2}=t c t c=(t \cdot c) t c=e$. If H is finite dimensional Hopf algebra then H is semisimple if and only if $\epsilon\left(\int_{H}^{l}\right) \neq 0$ [LS]. Hence if H is semisimple, we may choose $t \in \int_{H}^{l}$ with $\epsilon(t)=1$. It follows that $\hat{t}(1)=t \cdot 1=\epsilon(t) \cdot 1=1$ and so $\hat{t}(A)=A^{H}$.

Fix a basis $\left\{h_{1}, h_{2}, \cdots, h_{n}\right\}$ of H. Let R be any k-algebra. For any (R, A)-bimodule V, let $W=V \otimes_{A}(A \# H)$ be the induced $(R, A \# H)$ bimodule. Let $L\left({ }_{R} V_{A^{H}}\right)$ denote the lattice of $\left(R, A^{H}\right)$-subbimodules
of V and let $L\left({ }_{R} W_{A \# H}\right)$ be the lattice of $(R, A \# H)$-subbimodules of W.

Lemma 2. Let H be a finite dimensional semisimple Hopf algebra and let R, A, e, V and W be as above. Then there exist inclusion preserving maps

$$
\sigma: L\left({ }_{R} V_{A^{H}}\right) \rightarrow L\left({ }_{R} W_{A \# H}\right)
$$

and

$$
\mu: L\left({ }_{R} W_{A \# H}\right) \rightarrow L\left({ }_{R} V_{A^{H}}\right)
$$

such that for $U \in L\left(R_{R} V_{A^{H}}\right)$, and $X_{1}, X_{2} \in L\left({ }_{R} W_{A \# H}\right)$ we have $U^{\sigma \mu}=$ U and $\left(X_{1} \oplus X_{2}\right)^{\mu}=X_{1}^{\mu} \oplus X_{2}^{\mu}$.

Proof. Define

$$
\sigma: L\left({ }_{R} V_{A^{H}}\right) \rightarrow L\left({ }_{R} W_{A \# H}\right), U \mapsto(U \otimes e)(A \# H)
$$

and

$$
\mu: L\left({ }_{R} W_{A \# H}\right) \rightarrow L\left({ }_{R} V_{A^{H}}\right), \Sigma v_{i} \otimes h_{i} \mapsto \Sigma \epsilon\left(h_{i}\right) v_{i},
$$

for any $w=\Sigma v_{i} \otimes h_{i} \in W$. Then μ is well-defined since any $w \in W$ has a unique representation in this form. μ is an $\left(R, A^{H}\right)$-bimodule map since $h a=a h$ for all $a \in A^{H}$. Thus if $X \in L\left({ }_{R} W_{A \# H}\right)$, then $X^{\mu} \in L\left({ }_{R} V_{A^{H}}\right)$ and if $X_{1}, X_{2} \in L\left({ }_{R} W_{A \# H}\right)$ then $\left(X_{1}+X_{2}\right)^{\mu}=$ $X_{1}{ }^{\mu}+X_{2}{ }^{\mu}$. Clearly both σ and μ preserve inclusions. If $X_{1} \cap X_{2}=$ 0 then $X_{1} e \cap X_{2} e=0$ since $X_{1}, X_{2} \in L\left({ }_{R} W_{A \# H}\right)$. For any $w=$ $\Sigma v_{i} \otimes h_{i} \in W$,

$$
\begin{aligned}
\dot{w} e & =\left(\Sigma v_{i} \otimes h_{i}\right) e=\Sigma v_{i} \otimes h_{i} e \\
& =\Sigma v_{i} \otimes h_{i} t c=\Sigma v_{i} \otimes \epsilon\left(h_{i}\right) t c \\
& =\Sigma \epsilon\left(h_{i}\right) v_{i} \otimes t c=\mu(w) \otimes e,
\end{aligned}
$$

and

$$
\begin{gathered}
v \otimes e t=(v \otimes e) t \\
v \otimes e t=v \otimes t c t=v \otimes(t \cdot c) t=v \otimes 1 t=v \otimes t, \forall v \in V
\end{gathered}
$$

If $v \otimes e=0$ then $v \otimes t=v \otimes e t=(v \otimes e) t=0$ so $v=0$. Thus $v_{1} \otimes e=v_{2} \otimes e$ implies $v_{1}=v_{2}$. Therefore if $X_{1} \cap X_{2}=0$ then $X_{1}^{\mu} \cap X_{2}^{\mu}=0$. For then, for any $v \in X_{2}^{\mu} \cap X_{2}^{\mu}, v=\mu\left(x_{1}\right)=\mu\left(x_{2}\right)$ for some $x_{1} \in X_{1}, x_{2} \in X_{2}$ and $v \otimes e=\mu\left(x_{1}\right) \otimes e=\mu\left(x_{2}\right) \otimes e$. So $v \otimes e=x_{1} e=x_{2} e \in X_{1} e \cap X_{2} e=0$ hence $v=0$. Therefore $\left(X_{1} \oplus X_{2}\right)^{\mu}=X_{1}^{\mu} \oplus X_{2}^{\mu}$. For $U \in L\left({ }_{R} V_{A^{H}}\right), U^{\sigma} e=(U \otimes e)(A \# H) e=$ $U \otimes A^{H} e=U \otimes e$ by Lemma 1. Thus if $w \in U^{\sigma}, w e=\mu(w) \otimes e \in U \otimes e$ and so $\mu(w) \in U$; that is $U^{\sigma \mu} \subseteq U$. If $u \in U$ then $w=u \otimes e=$ $(u \otimes e)(1 \otimes 1) \in U^{\sigma}$ and $u \otimes e=w e=\mu(w) \otimes e$. It follows that $u=\mu(w) \in U^{\sigma \mu}$ and so $U=U^{\sigma \mu}$. This completes the proof.

When H is a finite dimensional semisimple Hopf algebra and A is a left H-module algebra, if A is right Noetherian, then A is right Noetherian A^{H}-module [M].

Two basic properties of Krull dimension we require are as follows[GW]:
(a) Let R and S be rings, let V and W be modules over R and S respectively and suppose there exists an inclusion preserving one-toone map $L\left(V_{R}\right) \rightarrow L\left(W_{S}\right)$. If $K \operatorname{dim} W_{S}$ exists then $K \operatorname{dim} V_{R}$ exists and $K \operatorname{dim} V_{R} \leqq K \operatorname{dim} W_{S}$. In particular, this always applies in the special case when $V=W, S \subset R$ and where $L\left(V_{R}\right) \rightarrow L\left(V_{S}\right)$ is given by restriction of operators to S.
(b) Let V be a submodule of the right R-module W. Then $K \operatorname{dim}$ W_{R} exists if and only if both $K \operatorname{dim} V_{R}$ and $K \operatorname{dim}(W / V)_{R}$ exist and in this case $K \operatorname{dim} W_{R}=\sup \left\{K \operatorname{dim} V_{R}, K \operatorname{dim}(W / V)_{R}\right\}$.

Lemma 3. If $f: M \rightarrow N$ is a group isomorphism for left S-modules M and N for a ring S and M is a right R-module for a ring R then it
is possible to give a right R-module structure on N and there exists a right R-module isomorphism $\phi: M \rightarrow N$.

Proof. For any $n \in N$, there exists $m \in M$ such that $f(m)=n$. We set $n \cdot r=f(m) \cdot r=f(m \cdot r)$ for $n \in N, m \in M$ and $r \in R$. Then N is a right R-module. Define $\phi: M \rightarrow N$ via $m \mapsto f(m)=\phi(m)$. Then ϕ is a right R-module isomorphism.

Proposition 1. Let H be a finite dimensional semisimple Hopf algebra and let A be a left H-module algebra. If V is a right A-module then $K \operatorname{dim} V_{A}$ exists if and only if $K \operatorname{dim} V_{A^{H}}$ exists and in this case $K \operatorname{dim} V_{A}=K \operatorname{dim} V_{A^{H}}$.

Proof. Set $W=V \otimes(A \# H)$. By the special case in (a) above, if $K \operatorname{dim} V_{A^{H}}$ exists then so dose $K \operatorname{dim} V_{A}$ and, moreover, $K \operatorname{dim}$ $V_{A} \leqq K \operatorname{dim} V_{A^{H}}$. Conversely, assume that $K \operatorname{dim} V_{A}$ exists. Give a right A-module structure of W as $w \cdot a=w(a \# 1)$ for $w \in W$ and $a \in A$. Since $A \# H$ is a free left A-module of rank $n=\operatorname{dim}{ }_{k} H$, there exists a left A-module isomorphism $f: A \# H \rightarrow A^{(n)}$. Give a right A-module structure of $V \otimes_{A} A^{(n)}$ as $(v \otimes u) \cdot a^{\prime}=(v \otimes f(a h)) \cdot a^{\prime}=$ $v \otimes f\left(a h \cdot a^{\prime}\right)$ for $v \in V, a h \in A \# H, u \in V^{(n)}$ and $a^{\prime} \in A$ and define $\phi: V \otimes_{A}(A \# H) \rightarrow V \otimes_{A} A^{(n)}$ by $i d \otimes f$. Then ϕ is a right A-module isomorphism. And $V \otimes_{A} A^{(n)} \cong\left(V \otimes_{A} A\right)^{(n)} \cong V_{A}^{(n)}$ as right A modules by the Lemma 3. Hence (b) implies that $K \operatorname{dim} W_{A}=K \operatorname{dim}$ V_{A}. Since $A \cong A \# 1 \subset A \# H, K \operatorname{dim} W_{A \# H}$ exists and in fact $K \operatorname{dim}$ $W_{A \# H} \leqq K \operatorname{dim} W_{A}=K \operatorname{dim} V_{A}$ by the special case in (a). We show that Lemma 2 also holds for right A-module V. So Lemma 2 asserts that there exists an one to one inclusion preserving map $\sigma: L\left(V_{A^{H}}\right) \rightarrow L\left(W_{A \# H}\right)$. Hence (a) implies that $K \operatorname{dim} V_{A^{H}} \leqq K \operatorname{dim}$ $W_{A \# H} \leqq K \operatorname{dim} W_{A}=K \operatorname{dim} V_{A}$. This completes the proof.

Corollary. A is right Artinian if and only if A is a right Artinian A^{H}-module.

Theorem 1. If A is right Artinian then A^{H} is right Artinian.
Proof. Assume that A is right Artinian and take $V=A$ in Proposition 1. Since $A_{A^{H}}^{H} \subset A_{A^{H}}, K \operatorname{dim} A_{A^{H}}^{H} \leqq K \operatorname{dim} A_{A^{I I}}=K \operatorname{dim} A_{A}$. Therefore A^{H} is right Artinian.

Lemma 4. Let $A \# H$ be a smash product algebra for a finite dimensional semisimple Hopf algebra H. Let W be an $(R, A \# H)$ bimodule for any algebra R and let $V \in L\left({ }_{R} W_{A \# H}\right)$. If V has a complement in $L\left({ }_{R} W_{A}\right)$, then V also has a complement in $L\left({ }_{R} W_{A \# H}\right)$.

Proof. See [BM 89].
Proposition 2. Let H be a finite dimensional semisimple Hopf algebra and let A be a left H-module algebra. If V_{A} is completely reducible then so is $V_{A^{H}}$.

Proof. If V_{A} is completely reducible then $W_{A}=V \otimes(A \# H) \cong$ $V_{A}^{(n)}$ is also completely reducible. By Lemma 4, we conclude that $W_{A \# H}$ is completely reducible. Therefore if $U \in L\left(V_{A^{H}}\right)$ then $U^{\sigma} \in$ $L\left(W_{A \# H}\right)$ has a complemet $X \in L\left(W_{A \# H}\right)$ with $W=U^{\sigma} \oplus X$. By Lemma $2, V=W^{\mu}=\left(U^{\sigma} \oplus X\right)^{\mu}=U^{\sigma \mu} \oplus X^{\mu}=U \oplus X^{\mu}$. Thus $X^{\mu} \in L\left(V_{A^{H}}\right)$ is a complement for U and we have shown that $V_{A^{H}}$ is completely reducible.

Recall that the socle of V, $\operatorname{Soc} V_{A}$, is the sum of all simple submodules of V and the radical of $V, \operatorname{rad} V_{A}$, is the intersection of all maximal submodules of V.

Theorem 2. $\operatorname{Soc} V_{A} \subset \operatorname{Soc} V_{A^{H}}$ and rad $V_{A} \supset \operatorname{rad} V_{A^{H}}$ where H and A are as above.

Proof. By Proposition 2, soc V_{A} is completely reducible as an A^{H}-module. Hence soc $V_{A} \supset$ Soc $V_{A^{H}}$. Let M be a maximal A module of V. Then V / M is a completely reducible A-module. By

Proposition 2, V / M is completely reducible as A^{H}-module. In particula, $M=\cap L_{i}$ for certain maximal A^{H}-submodules of V. It follows that $\operatorname{rad} V_{A} \supset \operatorname{rad} V_{A^{I I}}$.

Lemma 5. Let H and G be finite dimensional, semisimple Hopf algebras, A a left H-module algebra and let B be a left G-module algebra. If V is a (B, A)-bimodule then the induced module $W=$ $(B \# G) \otimes_{B} V \otimes_{A}(A \# H)$ is a $(B \# G, A \# H)$-bimodule. Furthermore, there exists inclusion preserving maps

$$
\sigma: L\left({ }_{B^{G}} V_{A^{H}}\right) \rightarrow L\left({ }_{B \# G} W_{A \# H}\right)
$$

and

$$
\mu: L\left(B \#{ }_{B} W_{A \# H}\right) \rightarrow L\left({ }_{B^{G}} V_{A^{H}}\right)
$$

such that for any $U \in L\left({ }_{B^{G}} V_{A^{H}}\right), U^{\sigma \mu}=U$ and μ preserves direct sums.

Proof. For all $b \in B$ and $g \in G, b g=\Sigma g_{2}\left(\bar{S} g_{1} \cdot b\right)$; for $\Sigma g_{2}\left(\bar{S} g_{1}\right.$. $b)=\Sigma g_{2} \#\left(\bar{S} g_{1} \cdot b\right)=\Sigma\left(1 \# g_{2}\right)\left(\left(\bar{S} g_{1} \cdot b\right) \# 1\right)=\Sigma 1 \cdot\left(g_{2} \cdot\left(\bar{S} g_{1} \cdot b\right) \# g_{3}=\right.$ $\Sigma 1 \cdot\left(g_{2} \bar{S} g_{1} \cdot b\right) \# g_{3}=\Sigma \epsilon\left(g_{1}\right) 1_{G} \cdot b \# g_{2}=b \# g=b g$. Define $\beta: B \# G \rightarrow$ $G \otimes B$ via $b g=\Sigma g_{2}\left(\bar{S} g_{1} \cdot b\right) \mapsto \Sigma g_{2} \otimes\left(\bar{S} g_{1} \cdot b\right)$ and $\alpha: G \otimes B \rightarrow B \# G$ via $g \otimes b \mapsto(1 \# g)(b \# 1)$. Then β is a right B-module isomorphism with the inverse α. Therefore $B \# G$ is a right B-module. Since G is a finite dimensional Hopf algebra, the antipode S of G is bijective [LS]. Therefore $B \# G$ is a free right B-module with rank $n=\operatorname{dim}_{k} H$ since S is invertible [BM]. Thus $W=(B \# G) \otimes_{B} V \otimes_{A}(A \# H)$ has a proper tensor product structure and it is a $(B \# G, A \# H)$-bimodule. First set $R=B^{G}$ in Lemma 2 and let $M=V \otimes_{A}(A \# H)$. Then M is a $(R, A \# H)$-bimodule. By Lemma 2, there exist inclusion preserving maps

$$
\sigma_{1}: L\left({ }_{B^{G}} V_{A^{H}}\right) \rightarrow L\left({ }_{B^{G}} M_{A \# H}\right)
$$

and

$$
\mu_{1}: L\left({ }_{B^{G}} M_{A \# H}\right) \rightarrow L\left({ }_{B^{G}} V_{A^{H}}\right)
$$

such that $\mu_{1} \sigma_{1}=i d$ and μ_{1} preserves direct sums. We can now apply the left analog of Lemma 2 with $R=A \# H$ for $W=(B \# G) \otimes M$, since $B \# G$ is a free right B-module with rank $n=\operatorname{dim}_{k} H$. We deduce that there exist inclusion maps

$$
\sigma_{2}: L\left({ }_{B^{G}} M_{A \# H}\right) \rightarrow L\left(B \# G M_{A \# H}\right), U \mapsto(B \# G)\left(e^{\prime} \otimes U\right)
$$

and

$$
\mu_{2}: L\left({ }_{B \# G} W_{A \# H}\right) \rightarrow L\left({ }_{B^{G}} M_{A \# H}\right), \Sigma g_{i} \otimes m_{i} \mapsto \Sigma \epsilon\left(g_{i}\right) m_{i}
$$

such that $\sigma_{2} \mu_{2}=i d$ and μ_{2} preserves dirct sums. It is now clear that $\sigma=\sigma_{2} \sigma_{1}$ and $\mu_{1} \mu_{2}$ have the appropriate properties.

Theorem 3. Let H and G be finite dimensional, semisimple Hopf algebras and let H and G be acting on A and B respectively. If V is a (B, A)-bimodule then $K \operatorname{dim}_{B} V_{A}$ exists if and only if $K \operatorname{dim}_{B^{G}} V_{A^{H}}$ exists and in this case $K \operatorname{dim}_{B} V_{A}=K \operatorname{dim}_{B^{G}} V_{A^{H}}$.

Proof. Let $W=(B \# G) \otimes_{B} V \otimes_{A}(A \# H)$. Since $A \# H$ is a free left A-module of rank $n=\operatorname{dim}_{k} H$ and $B \# G$ is a free right B-module of rank $m=\operatorname{dim}_{k} G$ as in the proof of Lemma $5,{ }_{B} W_{A}=(B \# G) \otimes_{B}$ $V \otimes_{A}(A \# H) \cong(B \# G) \otimes_{B} V \otimes_{A} A^{(n)} \cong(B \# G) \otimes_{B}\left(V \otimes_{A} A\right)^{(n)} \cong$ $(B \# G) \otimes_{B} V^{(n)} \cong B^{(m)} \otimes_{B} V^{(n)} \cong\left(B \otimes_{B} V^{(n)}\right)^{(m)} \cong\left(V^{(n)}\right)^{(m)} \cong_{B}$ $V_{A}^{(m n)}$, as in the proof of Lemma 4. In view of preceding Lemma, the proof of Proposition 1 immediately can be applicable to yield the result.

Corollary. Assume that H is a finite dimensional,semisimple Hopf algebra and A is a left H-module algebra. If A satisfies the descending chain condition on two sided ideals, then A^{H} satisfies the descending chain condition on two sided ideals.

Proof. Take $A=B, H=G$ and $V=A$ in Theorem 3. If A satisfies the descending chain condition on two sided ideals then $K \operatorname{dim}_{A^{H}} A_{A^{H}}^{H} \leqq K \operatorname{dim}{ }_{A^{H}} A_{A^{H}}=K \operatorname{dim}{ }_{A} A_{A}=0$. Hence $K \operatorname{dim}$ ${ }_{A^{H}} A_{A^{H}}^{H}=0$. Therefore A^{H} satisfies the descending chain condition on two sided ideals.

References

[BM] R. J. Blattner, S. Montgomery, Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137 (1989), 37-54.
[CFM] M. Cohen, D. Fischman, S. Montgomery, Hopf Galois extensions, Smash products, and Morita equivalence, J.Algebra 133 (1990), 351-372.
[GW] K. R. Goodearl, R. B. Warfield,JR, An Introduction to Noncommutative Noetherian Rings, Cambridge University, New York, 1989.
[LS] R. S. Larson, M. Sweedler, An associative orthogonal bilinea form for Hopf algebras, Amer. J. Math. 91 (1969), 75-93.
[M] S. Montgomery, Hopf Algebras and their actions on Rings, AMS, Providence,Rhode Island, 1993.
[S] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
and
Department of Mathematics
Hoseo University
Asan 337-850, Korea

