JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 8, June 1995

SMASH PRODUCT ALGEBRAS AND INVARIANT ALGEBRAS

KANG JU MIN AND JUN SEOK PARK

ABSTRACT. Let H and G be finite dimensional semisimple Hopf algebras and let A and B be left H and G-module algebras respectively. We use smash product algebras to show that 1) if A is right Artinian then A^H is right Artinian, 2) Soc $V_A \subset$ Soc V_{AH} and rad $V_A \supset$ rad V_{AH} , 3) $K \dim_B V_A = K \dim_{BG} V_{AH}$.

Throughout we let k be a field. Tensor products are assumed to be over k unless stated otherwise. Let H be a Hopf algebra over a field k. We let Δ be the comultiplicatin and we will use the sigma notation, $\Delta: H \to H \otimes H$, $\Delta(h) = \Sigma_{(h)}h_1 \otimes h_2$. Let ϵ be the counit and S be the antipode of H.

An algebra A is said to be a left H-module algebra if

(1) A is a left H-module, via $h \otimes a \mapsto h \cdot a$

(2) $h \cdot (ab) = \Sigma(h_1 \cdot a)(h_2 \cdot b)$

(3) $h \cdot 1_A = \epsilon(h) 1_A$ for all $h \in H$ and for all $a, b \in A$.

Let A be a left H-module algebra then the smash product algebra A#H is defined as follows: For all $a, b \in A$ and for all $h, k \in H$,

- (1) as k-spaces, $A#H = A \otimes H$. We write a#h for the element $a \otimes h$.
- (2) multiplication is given by

This paper was supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1994, Project No. 94-1427. Received by the editors on June 30, 1995.

1991 Mathematics subject classifications: Primary 16S40.

$$(a\#h)(b\#k) = \Sigma a(h_1 \cdot b)\#h_2k.$$

We show that $A \cong A \# 1$ and $H \cong 1 \# H$; for this reason we frequently abbrivate the element a # h by ah.

REMARK. Let H be a group algebra kG and let A be a H-module algebra. Since $\Delta g = g \otimes g$ for $g \in G$, $g \cdot (ab) = (g \cdot a)(g \cdot b)$ for all $a, b \in A$ and thus g acts as an endomorphism of A. In addition, each g acts as an automorphism of A since $g^{-1}g = 1$. Thus we have a group homomorphism $G \longrightarrow Aut_k A$. Conversely, any such map makes A into a kG-module algebra. In this case A # kG = A * G is the skew group ring. The multiplication in A # kG is just (ag)(bh) = $(a \# g)(b \# h) = a(g \cdot b)gh = ab^{g^{-1}}gh$.

We extend some arguments for the skew group rings to finite dimensional Hopf algebras. If H is a finite dimensional Hopf algebra then the left integral of H, $\int_{H}^{l} = \{t \in H | ht = \epsilon(h)t$, for all $h \in H\}$, is one dimensional [LS]. Choose $0 \neq t \in \int_{H}^{l}$. Let A be a left H-module algebra and let $A^{H} = \{a \in A | h \cdot a = \epsilon(h)a \text{ for all } h \in H\}$. Then the map $\hat{t}: A \to A$ given by $\hat{t}(a) = t \cdot a$ is an A^{H} -bimodule map with values in A^{H} .

LEMMA 1 [CFM]. Let H be finite dimensional acting on A and assume that $\hat{t}: A \to A^H$ is surjective. Then there exists a nonzero idempotent $e \in A \# H$ such that $e(A \# H)e = A^H e \cong A^H$.

If \hat{t} is surjective, there exists $c \in A$ with $\hat{t}(c) = t \cdot c = 1$. Define e = tc then $e^2 = tctc = (t \cdot c)tc = e$. If H is finite dimensional Hopf algebra then H is semisimple if and only if $\epsilon(\int_{H}^{l}) \neq 0$ [LS]. Hence if H is semisimple, we may choose $t \in \int_{H}^{l}$ with $\epsilon(t) = 1$. It follows that $\hat{t}(1) = t \cdot 1 = \epsilon(t) \cdot 1 = 1$ and so $\hat{t}(A) = A^{H}$.

Fix a basis $\{h_1, h_2, \dots, h_n\}$ of H. Let R be any k-algebra. For any (R, A)-bimodule V, let $W = V \otimes_A (A \# H)$ be the induced (R, A # H)-bimodule. Let $L(_RV_{A^H})$ denote the lattice of (R, A^H) -subbimodules

of V and let $L(_RW_{A\#H})$ be the lattice of (R, A#H)-subbimodules of W.

LEMMA 2. Let H be a finite dimensional semisimple Hopf algebra and let R, A, e, V and W be as above. Then there exist inclusion preserving maps

$$\sigma \colon L({}_{R}V_{A^{H}}) \to L({}_{R}W_{A^{H}})$$

and

$$\mu \colon L({}_RW_{A\#H}) \to L({}_RV_{A^H})$$

such that for $U \in L({}_{R}V_{A^{H}})$, and $X_{1}, X_{2} \in L({}_{R}W_{A\#H})$ we have $U^{\sigma\mu} = U$ and $(X_{1} \oplus X_{2})^{\mu} = X_{1}^{\mu} \oplus X_{2}^{\mu}$.

PROOF. Define

$$\sigma \colon L({}_{R}V_{A^{H}}) \to L({}_{R}W_{A\#H}), U \mapsto (U \otimes e)(A\#H)$$

and

$$\mu \colon L({}_{R}W_{A\#H}) \to L({}_{R}V_{A^{H}}), \Sigma v_{i} \otimes h_{i} \mapsto \Sigma \epsilon(h_{i})v_{i},$$

for any $w = \Sigma v_i \otimes h_i \in W$. Then μ is well-defined since any $w \in W$ has a unique representation in this form. μ is an (R, A^H) -bimodule map since ha = ah for all $a \in A^H$. Thus if $X \in L({}_RW_{A\#H})$, then $X^{\mu} \in L({}_RV_{A^H})$ and if $X_1, X_2 \in L({}_RW_{A\#H})$ then $(X_1 + X_2)^{\mu} =$ $X_1^{\mu} + X_2^{\mu}$. Clearly both σ and μ preserve inclusions. If $X_1 \cap X_2 =$ 0 then $X_1e \cap X_2e = 0$ since $X_1, X_2 \in L({}_RW_{A\#H})$. For any w = $\Sigma v_i \otimes h_i \in W$,

$$we = (\Sigma v_i \otimes h_i)e = \Sigma v_i \otimes h_i e$$
$$= \Sigma v_i \otimes h_i tc = \Sigma v_i \otimes \epsilon(h_i)tc$$
$$= \Sigma \epsilon(h_i)v_i \otimes tc = \mu(w) \otimes e.$$

and

$$v \otimes et = (v \otimes e)t$$

 $v \otimes et = v \otimes tct = v \otimes (t \cdot c)t = v \otimes 1t = v \otimes t, \forall v \in V.$

If $v \otimes e = 0$ then $v \otimes t = v \otimes et = (v \otimes e)t = 0$ so v = 0. Thus $v_1 \otimes e = v_2 \otimes e$ implies $v_1 = v_2$. Therefore if $X_1 \cap X_2 = 0$ then $X_1^{\mu} \cap X_2^{\mu} = 0$. For then, for any $v \in X_2^{\mu} \cap X_2^{\mu}$, $v = \mu(x_1) = \mu(x_2)$ for some $x_1 \in X_1, x_2 \in X_2$ and $v \otimes e = \mu(x_1) \otimes e = \mu(x_2) \otimes e$. So $v \otimes e = x_1 e = x_2 e \in X_1 e \cap X_2 e = 0$ hence v = 0. Therefore $(X_1 \oplus X_2)^{\mu} = X_1^{\mu} \oplus X_2^{\mu}$. For $U \in L({}_{R}V_{A^{\mu}}), U^{\sigma}e = (U \otimes e)(A \# H)e = U \otimes A^{H}e = U \otimes e$ by Lemma 1. Thus if $w \in U^{\sigma}$, $we = \mu(w) \otimes e \in U \otimes e$ and so $\mu(w) \in U$; that is $U^{\sigma\mu} \subseteq U$. If $u \in U$ then $w = u \otimes e = (u \otimes e)(1 \otimes 1) \in U^{\sigma}$ and $u \otimes e = we = \mu(w) \otimes e$. It follows that $u = \mu(w) \in U^{\sigma\mu}$ and so $U = U^{\sigma\mu}$. This completes the proof.

When H is a finite dimensional semisimple Hopf algebra and A is a left H-module algebra, if A is right Noetherian, then A is right Noetherian A^H -module [M].

Two basic properties of Krull dimension we require are as follows[GW]:

(a) Let R and S be rings, let V and W be modules over R and S respectively and suppose there exists an inclusion preserving one-toone map $L(V_R) \to L(W_S)$. If $K \dim W_S$ exists then $K \dim V_R$ exists and $K \dim V_R \leq K \dim W_S$. In particular, this always applies in the special case when V = W, $S \subset R$ and where $L(V_R) \to L(V_S)$ is given by restriction of operators to S.

(b) Let V be a submodule of the right R-module W. Then Kdim W_R exists if and only if both Kdim V_R and Kdim $(W/V)_R$ exist and in this case Kdim $W_R = \sup\{K\dim V_R, K\dim (W/V)_R\}$.

LEMMA 3. If $f: M \to N$ is a group isomorphism for left S-modules M and N for a ring S and M is a right R-module for a ring R then it

is possible to give a right R-module structure on N and there exists a right R-module isomorphism $\phi: M \to N$.

PROOF. For any $n \in N$, there exists $m \in M$ such that f(m) = n. We set $n \cdot r = f(m) \cdot r = f(m \cdot r)$ for $n \in N$, $m \in M$ and $r \in R$. Then N is a right R-module. Define $\phi \colon M \to N$ via $m \mapsto f(m) = \phi(m)$. Then ϕ is a right R-module isomorphism.

PROPOSITION 1. Let H be a finite dimensional semisimple Hopf algebra and let A be a left H-module algebra. If V is a right A-module then $K \dim V_A$ exists if and only if $K \dim V_{A^H}$ exists and in this case $K \dim V_A = K \dim V_{A^H}$.

PROOF. Set $W = V \otimes (A \# H)$. By the special case in (a) above, if $K \dim V_{A^H}$ exists then so dose $K \dim V_A$ and, moreover, $K \dim$ $V_A \leq K \dim V_{A^H}$. Conversely, assume that $K \dim V_A$ exists. Give a right A-module structure of W as $w \cdot a = w(a\#1)$ for $w \in W$ and $a \in A$. Since A # H is a free left A-module of rank $n = \dim_{k} H$, there exists a left A-module isomorphism $f: A \# H \to A^{(n)}$. Give a right A-module structure of $V \otimes_A A^{(n)}$ as $(v \otimes u) \cdot a' = (v \otimes f(ah)) \cdot a' =$ $v\otimes f(ah\cdot a')$ for $v\in V$, $ah\in A\#H$, $u\in V^{(n)}$ and $a'\in A$ and define $\phi: V \otimes_A (A \# H) \to V \otimes_A A^{(n)}$ by $id \otimes f$. Then ϕ is a right A-module isomorphism. And $V \otimes_A A^{(n)} \cong (V \otimes_A A)^{(n)} \cong V_A^{(n)}$ as right Amodules by the Lemma 3. Hence (b) implies that $K \dim W_A = K \dim$ V_A . Since $A \cong A \# 1 \subset A \# H$, Kdim $W_{A \# H}$ exists and in fact Kdim $W_{A\#H} \leq K \dim W_A = K \dim V_A$ by the special case in (a). We show that Lemma 2 also holds for right A-module V. So Lemma 2 asserts that there exists an one to one inclusion preserving map $\sigma: L(V_{A^H}) \to L(W_{A\#H})$. Hence (a) implies that $K \dim V_{A^H} \leq K \dim$ $W_{A\#H} \leq K \dim W_A = K \dim V_A$. This completes the proof.

COROLLARY. A is right Artinian if and only if A is a right Artinian A^{H} -module.

THEOREM 1. If A is right Artinian then A^H is right Artinian.

PROOF. Assume that A is right Artinian and take V = A in Proposition 1. Since $A_{A^{H}}^{H} \subset A_{A^{H}}$, $K \dim A_{A^{H}}^{H} \leq K \dim A_{A^{H}} = K \dim A_{A}$. Therefore A^{H} is right Artinian.

LEMMA 4. Let A # H be a smash product algebra for a finite dimensional semisimple Hopf algebra H. Let W be an (R, A # H)bimodule for any algebra R and let $V \in L({}_{R}W_{A} \# H)$. If V has a complement in $L({}_{R}W_{A})$, then V also has a complement in $L({}_{R}W_{A} \# H)$.

PROOF. See [BM 89].

PROPOSITION 2. Let H be a finite dimensional semisimple Hopf algebra and let A be a left H-module algebra. If V_A is completely reducible then so is V_{AH} .

PROOF. If V_A is completely reducible then $W_A = V \otimes (A \# H) \cong V_A^{(n)}$ is also completely reducible. By Lemma 4, we conclude that $W_{A\#H}$ is completely reducible. Therefore if $U \in L(V_{A\#})$ then $U^{\sigma} \in L(W_{A\#H})$ has a complement $X \in L(W_{A\#H})$ with $W = U^{\sigma} \oplus X$. By Lemma 2, $V = W^{\mu} = (U^{\sigma} \oplus X)^{\mu} = U^{\sigma\mu} \oplus X^{\mu} = U \oplus X^{\mu}$. Thus $X^{\mu} \in L(V_{A\#})$ is a complement for U and we have shown that $V_{A\#}$ is completely reducible.

Recall that the socle of V, Soc V_A , is the sum of all simple submodules of V and the radical of V, rad V_A , is the intersection of all maximal submodules of V.

THEOREM 2. Soc $V_A \subset$ Soc V_{AH} and rad $V_A \supset$ rad V_{AH} where H and A are as above.

PROOF. By Proposition 2, soc V_A is completely reducible as an A^H -module. Hence soc $V_A \supset \text{Soc } V_{A^H}$. Let M be a maximal A-module of V. Then V/M is a completely reducible A-module. By

Proposition 2, V/M is completely reducible as A^H -module. In particula, $M = \bigcap L_i$ for certain maximal A^H -submodules of V. It follows that rad $V_A \supset \operatorname{rad} V_{A^H}$.

LEMMA 5. Let H and G be finite dimensional, semisimple Hopf algebras, A a left H-module algebra and let B be a left G-module algebra. If V is a (B, A)-bimodule then the induced module W = $(B\#G) \otimes_B V \otimes_A (A\#H)$ is a (B#G, A#H)-bimodule. Furthermore, there exists inclusion preserving maps

$$\sigma \colon L({}_{B^G}V_{A^H}) \to L({}_{B\#G}W_{A\#H})$$

and

$$\mu \colon L({}_{B\#G}W_{A\#H}) \to L({}_{B^G}V_{A^H})$$

such that for any $U \in L({}_{B^G}V_{A^H}), U^{\sigma\mu} = U$ and μ preserves direct sums.

PROOF. For all $b \in B$ and $g \in G$, $bg = \Sigma g_2(\overline{S}g_1 \cdot b)$; for $\Sigma g_2(\overline{S}g_1 \cdot b) = \Sigma g_2 \#(\overline{S}g_1 \cdot b) = \Sigma(1 \# g_2)((\overline{S}g_1 \cdot b) \# 1) = \Sigma 1 \cdot (g_2 \cdot (\overline{S}g_1 \cdot b) \# g_3 = \Sigma 1 \cdot (g_2 \overline{S}g_1 \cdot b) \# g_3 = \Sigma \epsilon(g_1) 1_G \cdot b \# g_2 = b \# g = bg$. Define $\beta \colon B \# G \to G \otimes B$ via $bg = \Sigma g_2(\overline{S}g_1 \cdot b) \mapsto \Sigma g_2 \otimes (\overline{S}g_1 \cdot b)$ and $\alpha \colon G \otimes B \to B \# G$ via $g \otimes b \mapsto (1 \# g)(b \# 1)$. Then β is a right *B*-module isomorphism with the inverse α . Therefore B # G is a right *B*-module. Since *G* is a finite dimensional Hopf algebra, the antipode *S* of *G* is bijective [LS]. Therefore B # G is a free right *B*-module with rank $n = \dim_k H$ since *S* is invertible [BM]. Thus $W = (B \# G) \otimes_B V \otimes_A (A \# H)$ has a proper tensor product structure and it is a (B # G, A # H)-bimodule. First set $R = B^G$ in Lemma 2 and let $M = V \otimes_A (A \# H)$. Then *M* is a (R, A # H)-bimodule. By Lemma 2, there exist inclusion preserving maps

$$\sigma_1 \colon L({}_{B^G}V_{A^H}) \to L({}_{B^G}M_{A^{\#}H})$$

 and

$$\mu_1 \colon L({}_{B^G}M_{A\#H}) \to L({}_{B^G}V_{A^H})$$

such that $\mu_1 \sigma_1 = id$ and μ_1 preserves direct sums. We can now apply the left analog of Lemma 2 with R = A # H for $W = (B \# G) \otimes M$, since B # G is a free right *B*-module with rank $n = \dim_k H$. We deduce that there exist inclusion maps

$$\sigma_2 \colon L({}_{B^G}M_{A\#H}) \to L({}_{B\#G}M_{A\#H}), U \mapsto (B\#G)(e' \otimes U)$$

and

$$\mu_2 \colon L(B_{\#G}W_{A\#H}) \to L(B^G M_{A\#H}), \Sigma g_i \otimes m_i \mapsto \Sigma \epsilon(g_i) m_i$$

such that $\sigma_2 \mu_2 = id$ and μ_2 preserves dirct sums. It is now clear that $\sigma = \sigma_2 \sigma_1$ and $\mu_1 \mu_2$ have the appropriate properties.

THEOREM 3. Let H and G be finite dimensional, semisimple Hopf algebras and let H and G be acting on A and B respectively. If V is a (B, A)-bimodule then $K \dim_B V_A$ exists if and only if $K \dim_{B^G} V_{A^H}$ exists and in this case $K \dim_B V_A = K \dim_{B^G} V_{A^H}$.

PROOF. Let $W = (B\#G) \otimes_B V \otimes_A (A\#H)$. Since A#H is a free left A-module of rank $n = \dim_k H$ and B#G is a free right B-module of rank $m = \dim_k G$ as in the proof of Lemma 5, ${}_BW_A = (B\#G) \otimes_B$ $V \otimes_A (A\#H) \cong (B\#G) \otimes_B V \otimes_A A^{(n)} \cong (B\#G) \otimes_B (V \otimes_A A)^{(n)} \cong$ $(B\#G) \otimes_B V^{(n)} \cong B^{(m)} \otimes_B V^{(n)} \cong (B \otimes_B V^{(n)})^{(m)} \cong (V^{(n)})^{(m)} \cong_B$ $V_A^{(mn)}$, as in the proof of Lemma 4. In view of preceding Lemma, the proof of Proposition 1 immediately can be applicable to yield the result.

COROLLARY. Assume that H is a finite dimensional, semisimple Hopf algebra and A is a left H-module algebra. If A satisfies the descending chain condition on two sided ideals, then A^H satisfies the descending chain condition on two sided ideals.

PROOF. Take A = B, H = G and V = A in Theorem 3. If A satisfies the descending chain condition on two sided ideals then $K \dim_{A^{H}} A^{H}_{A^{H}} \leq K \dim_{A^{H}} A_{A^{H}} = K \dim_{A} A_{A} = 0$. Hence $K \dim_{A^{H}} A^{H}_{A^{H}} = 0$. Therefore A^{H} satisfies the descending chain condition on two sided ideals.

REFERENCES

- [BM] R. J. Blattner, S. Montgomery, Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137 (1989), 37-54.
- [CFM] M. Cohen, D. Fischman, S. Montgomery, Hopf Galois extensions, Smash products, and Morita equivalence, J.Algebra 133 (1990), 351-372.
- [GW] K. R. Goodearl, R. B. Warfield, JR, An Introduction to Noncommutative Noetherian Rings, Cambridge University, New York, 1989.
- [LS] R. S. Larson, M. Sweedler, An associative orthogonal bilinea form for Hopf algebras, Amer. J. Math. 91 (1969), 75-93.
- [M] S. Montgomery, Hopf Algebras and their actions on Rings, AMS, Providence, Rhode Island, 1993.
- [S] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA AND DEPARTMENT OF MATHEMATICS HOSEO UNIVERSITY

ASAN 337-850, KOREA