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SMASH PRODUCT ALGEBRAS
AND INVARIANT ALGEBRAS

KANG JU MIN AND JUN SEOK PARK

ABSTRACT. Let H and G be finite dimensional semisimple Hopf alge-
bras and let A and B be left H and G-module algebras respectively.
We use smash product algebras to show that 1) if A is right Ar-
tinian then A is right Artinian, 2) Soc V4 C Soc V,x and rad
V4D radVy,m, 3) K dim gV4 = K dim geVyn.

Throughout we let k be a field. Tensor products are assumed to
be over k unless stated otherwise. Let H be a Hopf algebra over a
field k. We let A be the comultiplicatin and we will use the sigma
notation, A: H — H ® H, A(h) = (k1 ® ha. Let € be the counit
and S be the antipode of H.

An algebra A is said to be a left H-module algebra if

(1) Ais aleft H-module,viah®a— h-a
(2) h-(ab) = X(hy -a)(he-b)
(3) h-14=¢€(h)la for all h € H and for all a,b € A.

Let A be a left H-module algebra then the smash product algebra
A#H is defined as follows: For all a,b € A and for all h,k € H,

(1) as k-spaces, A#H = A® H. We write a#h for the element
a® h.
(2) multiplication is given by
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(a#th)(b#tk) = Sa(hy - b)#hok.

We show that A = A#1 and H = 1#H; for this reason we fre-
quently abbrivate the element a#h by ah.

REMARK. Let H be a group algebra kG and let A be a H-module
algebra. Since Ag - g®g for g € G, g-(ab) = (g -a)(g-b) for
all a,b € A and thus ¢g acts as an endomorphism of A. In addition,
each ¢g acts as an automorphism of A since g7!¢g = 1. Thus we have
a group homomorphism G — AutpA. Conversely, any such map
makes A into a kG-module algebra. In this case A#kG = A x G is
the skew group ring. The multiplication in A#kG is just (ag)(bh) =
(a#¢)(bjth) = a(g - b)gh = abd™" gh.

We extend some arguments for the skew group rings to finite di-
mensional Hopf algebras. If H is a finite dimensional Hopf algebra
then the left integral of H, f;{ = {t € H|ht = e(h)t, for all h € H}, is
one dimensional [LS]. Choose 0 #t € [ Il{ Let A be a left H-module
algebra and let A = {a € Alh-a = ¢(h)a for all h € H}. Then
the map ¢: A — A given by #(a) = t - a is an A”-bimodule map with

values in AH,

LEMMA 1 [CFM]. Let H be finite dimensional acting on A and-
assume that £: A — AM is surjective. Then there exists a nonzero

idempotent e € A#H such that e(A#H)e = AHe >~ AH,

If £ is surjective , there exists ¢ € A with i(c) = t-¢ = 1. Define
e = tc then e? = tctc = (t - ¢)tc = e. If H is finite dimensional Hopf
algebra then H is semisimple if and only if €( [ ;1) # 0 [LS]. Hence if
H is semisimple , we may choose t € [ II{ with €(t) = 1. It follows that
{(1)=t-1=¢(t)-1=1andso{(4) = AH.

Fix a basis {h1, ho, - ,h,} of H. Let R be any k-algebra. For any
(R, A)-bimodule V,let W = V@4 (A#H) be the induced (R, A#H )-
bimodule. Let L(zV4n) denote the lattice of (R, A7 )-subbimodules
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of V and let L(rWazn) be the lattice of (R, A# H )-subbimodules of
w.

LEMMA 2. Let H be a finite dimensional semisimple Hopf alge-
bra and let R,A,e,V and W be as above. Then there exist inclusion

preserving maps
0: L(rVan) = L(rWagH)

and

W L(RVVA#H) — L(rV4n)
such that forU € L(grVn), and X1, Xy € L(rRWagn) we haveU°* =
U and (X] o) Xz)” = )({l D X2”

PROOF. Define
o L(RVAH') — L(RWA#H),U — (U ® 6)(A#H)

and
n: L(RI’VA#H) — L(RVAH), Yv; @ hy Ze(hi)vi,

for any w = Yv; ® h; € W. Then u is well-defined since any w € W
has a unique representation in this form. p is an (R, AH¥)-bimodule
map since ha = ah for all a € AH, Thusif X € L(rWa#H), then
X+t € L(rVan) and if X1, X, € L(rWagn) then (X1 +X2)* =
X1* + X3, Clearly both o and pu preserve inclusions. If X; N X, =
0 then X;e N Xze = 0 since X;,X; € L(rWagn). For any w =
Yvi@hi e W,

we = (Zv; ® h;)e = Tv; ® h;e
= Yv; ® hitc = Yv; ® e(h;)tc
= Ye(hi)vi @tc = p(w) e,
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and
vet=(vQ®e)t

vRet=vQtct=v@(t-c)t=vR1lt=vQt,YveV.

fve=0thenv®t =vQRet = (v®e)t =0sov =0. Thus
v; ® e = vg ® e implies v; = vy. Therefore if X; N X2 = 0 then
XN XY = 0. For then, for any v € X NXJ v = p(z1) = p(z2)
for some z; € Xj,22 € Xo andv®e = p(z1)®e = p(:cQ) ® e.
SovQ®e = z1e = zv9¢ € X1eN Xoe = 0 hence v = 0. Therefore
(X1 0 Xo) = X' XY. ForU € L(rVan),U%e = (UQe)(A#H)e =
U®AHe = U®e by Lemma 1. Thusif w € U%,we = p(w)Q®e € URe
and so u(w) € U; that is U* CU. fu € U thenw = u®e =
(u®e)l®1l) € U’ and u® e = we = p(w) @e. It follows that
u = p(w) € U’" and so U = U?*. This completes the proof.

When H is a finite dimensional semisimple Hopf algebra and A
is a left H-module algebra, if A is right Noetherian, then A is right
Noetherian A¥-module [M].

Two basic properties of Krull dimension we require are as fol-
lows[GW]:

(a) Let R and S be rings, let V and W be modules over R and S
respectively and suppose there exists an inclusion preserving one-to-
one map L(Vg) — L(Ws). If Kdim Ws exists then I{dim Vg exists
and Kdim Vg £ Kdim Ws. In particular, this always applies in the |
special case when V = W, S C R and where L(Vg) — L(Vs) is given
by restriction of operators to S.

(b) Let V be a submodule of the right R-module W. Then K dim
W exists if and only if both Kdim Vi and Kdim (W/V)g exist and
in this case Kdim Wg = sup{Kdim Vg, {dim (W/V)g}.

LEMMA 3. If f: M — N is a group isomorphism for left S-modules
M and N for aring S and M is a right R-module for a ring R then it
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is possible to give a right R-module structure on N and there exists

a right R-module isomorphism ¢: M — N.

PROOF. For any n € N, there exists m € M such that f(m) = n.
Weset n-r= f(m)-r=f(m-r)forn € N, m € M and r € R. Then
N is a right R-module. Define ¢: M — N via m — f(m) = ¢(m).

Then ¢ is a right R-module isomorphism.

PROPOSITION 1. Let H be a finite dimensional semisimple Hopf
algebra and let A be a left H-module algebra. IfV is a right A-module
then Kdim Vy exists if and only if Kdim Vu exists and in this case
KdimVy = Kdim Vyn.

PROOF. Set W =V ® (A#H). By the special case in (a) above,
if dim Vyu exists then so dose Kdim V4 and, moreover, Kdim
Va £ Kdim V4u. Conversely, assume that Idim V4 exists. Give a
right A-module structure of W as w-a = w(a#l) for w € W and
a € A. Since A#H is a free left A-module of rank n = dim ;H, there
exists a left A-module isomorphism f: A#H — A, Give a right
A-module structure of V@4 A™ as (v@u)-d' = (v® f(ah))-d' =
v® f(ah-a')forveV ,ah € A#H ,u € V(" and ¢’ € A and define
¢: VRa(A#H) - VR4 A™ by id @ f. Then ¢ is a right A-module
isomorphism. And V ®4 A = (V ®4 A)) =~ Vf(‘”) as right A-
modules by the Lemma 3. Hence (b) implies that Kdim W4 = Kdim
Va. Since A & A#1 C A#H, Kdim Waxup exists and in fact Kdim
Wasa S KKdim W4 = Kdim V4 by the special case in (a). We
show that Lemma 2 also holds for right A-module V. So Lemma
2 asserts that there exists an one to one inclusion preserving map

0: L(Vyu) = L(Wagn). Hence (a) implies that Kdim V r £ Kdim
| Wapn S Kdim W4 = Kdim V4. This completes the proof. |

- COROLLARY. A isright Artinian if and only if A is a right Artinian
A _module.
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THEOREM 1. If A is right Artinian then A¥ is right Artinian.

PROOF. Assume that A isright Artinian and take V = A in Propo-
sition 1. Since AX,, C A n, Kdim Aﬁu S K dimA n = Kdim Ag4.

Therefore AH is right Artinian.

LEMMA 4. Let A#H be a smash product algebra for a finite di-
mensional semisimple Hopf algebra H. Let W be an (R,A#H)-
bimodule for any algebra R and let V € L(rWan). If V has a com-
plement in L(rWa) , then V also has a complement in L(rWagn).

PROOF. See [BM 89].

PROPOSITION 2. Let H be a finite dimensional semisimple Hopf
algebra and let A be a left H-module algebra. If V4 is completely

reducible then so is Vau. -

PRroOF. If V4 is completely reducible then Wy = V ® (A#H) =
Vf{" is also completely reducible. By Lemma 4, we conclude that
Waun is completely reducible. Therefore if U € L(Vn ) then U? €
L(Wagn) has a complemet X € L(Wagpn) with W = U’ @ X. By
Lemma 2,V = Wt = (U@ X)* =U* @ X* =U @ X*. Thus
X#* € L(Vyan) is a complement for U and we have shown that VAH 1s

completely reducible.

Recall that the socle of V, Soc V4 , is the sum of all simple sub-
modules of V' and the radical of V', rad Vj, is the intersection of all

maximal submodules of V.

THEOREM 2. Soc V4 C Soc Vuu and rad V4 D rad Vyn where H

and A are as above.

Proor. By Proposition 2, soc V4 1s completely reducible as an
AH_module. Hence soc V4 D Soc Vyn. Let M be a maximal A-

module of V. Then V/M is a completely reducible A-module. By
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Proposition 2, V/M is completely reducible as A”-module. In par-
ticula, M = NL; for certain maximal Af-submodules of V. It follows
that rad V4 D rad Vau.

LEMMA 5. Let H and G be finite dimensional, semisimple Hopf
algebras, A a left H-module algebra and let B be a left G-module
algebra. If V is a (B, A)-bimodule then the induced module W =
(B#G)Q®BV @4 (A#H) is a (B#G, A#H)-bimodule. Furthermore,

there exists inclusion preserving maps
o: L(gaVyu) — L(pgcWagn)

and

p: L(pgcWagn) = L(peVan)

such that for any U € L(geVuu),U?" = U and p preserves direct

sums.

PROOF. Forallb€ B and g € G, bg = £¢2(Sg; - b); for Lg2(Sg -

b) = £g2#(Sg1-0) = E(1#92)((Sg1 - b)#1) = T1- (g2 - (Sg1 - b)#gs =
21 (92591 -b)#gs = Te(91)1G - b#gs = b#g = bg. Define B: B#G —
G ® B via bg = $g2(Sg1 - b) — Lg2 ®(Sg1-b) and a: GQ® B — B#G
via ¢ ® b — (1#g)(b#1). Then f is a right B-module isomorphism
with the inverse a. Therefore B#G is a right B-module. Since G
is a finite dimensional Hopf algebra, the antipode S of G is bijective
[LS]. Therefore B#G is a free right B-module with rank n = dim;H
since S is invertible [BM]. Thus W = (B#G)®pV ®4 (A#H) has a

~ proper tensor product structure and it is a (B#G, A# H)-bimodule.
First set R = BY in Lemma 2 and let M = V ® 4 (A#H). Then M is
a (R, A#H)-bimodule. By Lemma 2, there exist inclusion preserving
maps

o1: L(peVan) = L(ga Magn)
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and

p1: L(gpe Magn) — L(peVan)

such that pjo1 = id and py preserves direct sums. We can now apply
the left analog of Lemma 2 with R = A#H for W = (B#G) ® M,
since B#G is a free right B-module with rank n = dimyH. We deduce

that there exist inclusion maps
| o2: L(gaMagn) — L(ppeMagn),U — (B#G)(e' @ U)
and
p2: L(ppcWayn) — L(gs Magn), Bgi @ mi — Le(gi)mi

such that oo e = 1d and po preserves dirct sums. It is now clear that

o = o901 and pgpe have the appropriate properties.

THEOREM 3. Let H and G be finite dimensional, semisimple Hopf
algebras and let H and G be acting on A and B respectively. If V is
a (B, A)-bimodule then K dim gV, exists if and only if Kdim geVn

exists and in this case I{dim gV4 = Kdim geVyu.

PROOF. Let W = (B#G)®pV Q@4 (A#H). Since A#H is a free -
left A-module of rank n = dimpH and B#G is a free right B-module
of rank m = dim;G as in the proof of Lemma 5, pW4 = (B#G) @p
V @4 (A#H) = (B#G)®@pV @4 AW = (B#G) @p (V @4 A)™)
(B#G) ®p V™ = B(™ @p V™) = (B V) m = (y)(m) ~p
V/g'"l"‘), as in the proof of Lemma 4. In view of preceding Lemma,
the proof of Proposition 1 immediately can be applicable to yield the

result.
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COROLLARY. Assume that H is a finite dimensional,semisimple
Hopf algebra and A is a left H-module algebra. If A satisfies the
descending chain condition on two sided ideals, then A" satisfies the

descending chain condition on two sided ideals.

PROOF. Take A = B, H = G and V = A in Theorem 3. If
A satisfies the descending chain condition on two sided ideals then
Kdim AHAﬁ‘I” S Kdim gnAan = Kdim 444 = 0. Hence Kdim
AH Ag « = 0. Therefore A satisfies the descending chain condition

on two sided ideals.
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