• Title/Summary/Keyword: semiprime submodule

Search Result 7, Processing Time 0.019 seconds

SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES

  • Lee, Sang-Cheol;Varmazyar, Rezvan
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.435-447
    • /
    • 2012
  • Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever $I^nK{\subseteq}Q$, where $I{\subseteq}h(R)$, n is a positive integer, and $K{\subseteq}h(M)$, then $IK{\subseteq}Q$. We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if grad$(Q){\cap}h(M)=Q+{\cap}h(M)$. Furthermore if M is finitely generated then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if (grad(Q)$\cap$h(M))n(grad$(0_M){\cap}h(M)$) = (Q$\cap$h(M))n(grad$(0_M){\cap}Q{\cap}h(M)$). Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that Q + K $\neq$ M and $Q{\cap}K{\subseteq}M_g$ for all $g{\in}G$, then we prove that Q + K is almost semiprime in M.

FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES

  • Beachy, John A.;Medina-Barcenas, Mauricio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1177-1193
    • /
    • 2020
  • Fully prime rings (in which every proper ideal is prime) have been studied by Blair and Tsutsui, and fully semiprime rings (in which every proper ideal is semiprime) have been studied by Courter. For a given module M, we introduce the notions of a fully prime module and a fully semiprime module, and extend certain results of Blair, Tsutsui, and Courter to the category subgenerated by M. We also consider the relationship between the conditions (1) M is a fully prime (semiprime) module, and (2) the endomorphism ring of M is a fully prime (semiprime) ring.

ON 𝜙-SEMIPRIME SUBMODULES

  • Ebrahimpour, Mahdieh;Mirzaee, Fatemeh
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1099-1108
    • /
    • 2017
  • Let R be a commutative ring with non-zero identity and M be a unitary R-module. Let S(M) be the set of all submodules of M and ${\phi}:S(M){\rightarrow}S(M){\cup}\{{\emptyset}\}$ be a function. We say that a proper submodule P of M is a ${\phi}$-semiprime submodule if $r{\in}R$ and $x{\in}M$ with $r^2x{\in}P{\setminus}{\phi}(P)$ implies that $rx{\in}P$. In this paper, we investigate some properties of this class of sub-modules. Also, some characterizations of ${\phi}$-semiprime submodules are given.

A GENERALIZATION OF MULTIPLICATION MODULES

  • Perez, Jaime Castro;Montes, Jose Rios;Sanchez, Gustavo Tapia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.83-102
    • /
    • 2019
  • For $M{\in}R-Mod$, $N{\subseteq}M$ and $L{\in}{\sigma}[M]$ we consider the product $N_ML={\sum}_{f{\in}Hom_R(M,L)}\;f(N)$. A module $N{\in}{\sigma}[M]$ is called an M-multiplication module if for every submodule L of N, there exists a submodule I of M such that $L=I_MN$. We extend some important results given for multiplication modules to M-multiplication modules. As applications we obtain some new results when M is a semiprime Goldie module. In particular we prove that M is a semiprime Goldie module with an essential socle and $N{\in}{\sigma}[M]$ is an M-multiplication module, then N is cyclic, distributive and semisimple module. To prove these results we have had to develop new methods.

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

SOME ASPECTS OF ZARISKI TOPOLOGY FOR MULTIPLICATION MODULES AND THEIR ATTACHED FRAMES AND QUANTALES

  • Castro, Jaime;Rios, Jose;Tapia, Gustavo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1285-1307
    • /
    • 2019
  • For a multiplication R-module M we consider the Zariski topology in the set Spec (M) of prime submodules of M. We investigate the relationship between the algebraic properties of the submodules of M and the topological properties of some subspaces of Spec (M). We also consider some topological aspects of certain frames. We prove that if R is a commutative ring and M is a multiplication R-module, then the lattice Semp (M/N) of semiprime submodules of M/N is a spatial frame for every submodule N of M. When M is a quasi projective module, we obtain that the interval ${\uparrow}(N)^{Semp}(M)=\{P{\in}Semp(M){\mid}N{\subseteq}P\}$ and the lattice Semp (M/N) are isomorphic as frames. Finally, we obtain results about quantales and the classical Krull dimension of M.