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SOME ASPECTS OF ZARISKI TOPOLOGY FOR

MULTIPLICATION MODULES AND THEIR ATTACHED

FRAMES AND QUANTALES

Jaime Castro, José Ŕıos, and Gustavo Tapia

Abstract. For a multiplication R-module M we consider the Zariski
topology in the set Spec (M) of prime submodules of M . We investigate

the relationship between the algebraic properties of the submodules of

M and the topological properties of some subspaces of Spec (M). We
also consider some topological aspects of certain frames. We prove that

if R is a commutative ring and M is a multiplication R-module, then the
lattice Semp (M/N) of semiprime submodules of M/N is a spatial frame

for every submodule N of M . When M is a quasi projective module, we

obtain that the interval ↑(N)Semp(M) = {P ∈ Semp (M) | N ⊆ P} and
the lattice Semp (M/N) are isomorphic as frames. Finally, we obtain

results about quantales and the classical Krull dimension of M .

Introduction

Multiplication modules were introduced by Barnard [6], these modules have
been studied by several authors [3], [4], [11], [17], [25] and [27]. The relationship
between the algebraic properties of a ring and the topological properties of the
Zariski topology defined on its prime spectrum has been studied in [1], [12],
[13], [14], [24], [31]. Some notions of primeness have been introduced and
investigated in [10], [28], [30].

In this paper, we consider the concept of prime and semiprime modules given
in [21], [22].

Given a multiplication module M over a commutative ring R, we consider
the Zariski topology for the spectrum Spec (M) of prime submodules of M .
Motivated by the results about the Zariski topology for the spectrum Spec (R)
of prime ideals of a ring R (see [5], [9], [13]), we investigate the relationship
between the topological properties of some subspaces of Spec (M) and the
algebraic properties of the submodules of M .
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In [20] the author says that the point-free topology is based on the fact
that the abstract lattice of open sets can contain a lot of information about
a topological space, and that an algebraic treatment can provide new insights
into the nature of spaces.

This viewpoint of the point-free topology is really interesting, because the
algebraic treatment of the lattice of the open sets of the Zariski topology of a
multiplication module M , related to the lattice of submodules of M , gives us in-
formation both of this topology and of the latticial structure of the submodules
of M .

The idea is to obtain links between these two areas of mathematics, and
to arouse interest for the development of this type of relationship in both re-
searchers of Algebra and Topology. This kind of results have by themselves a
great value, since they show the interaction between some aspects of the theory
of rings-modules and the theory of topology without points.

In [15], [16] the authors introduce a framework of a lattice structure theory
to analyze the submodules of a given module, in particular, they specialize in
the lattice Sub (M) of submodules of M and they obtain some results. These
authors also observe some topological aspects of certain frames that were con-
structed in that paper and that consideration eventually leads to the construc-
tion of some spatial frames. In this paper we take that point of view and
give interesting results between some aspects of the Zariski topology of the
prime spectrum of a multiplication module M and the algebraic structure of
the submodules of M .

The organization of the paper is as follows: Section 1 provides the neces-
sary material that is needed for the reading of the next sections. Section 2
is dedicated to prime (semiprime) modules. We give the relationship between
prime (semiprime) submodules of a multiplication R-module M and prime
(semiprime) ideals of the ring R. In Section 3 we consider the Zariski topology
for a multiplication module M and we study open and closed sets. Section 4 is
dedicated to studying compact, irreducible and dense subspaces. We charac-
terize compact sets in the form U (N) in terms of finitely generated submodules
of M . In Section 5 we give the main results. For an R-module M we denote
Semp (M) = {N ⊂M | N is semiprime submodule of M}∪{M} and we prove
that {Semp (M) ,∧,∨} is a frame for every ring R and every multiplication R-
module M .

We also prove that if R is a commutative ring and M is a multiplication
R-module, then Sub (M) is a bilateral quantal. Moreover, we prove that
Semp (M/N) is a spatial frame for all submodules N of M . When M is a quasi
projective module we obtain that ↑(N)Semp(M) = {P ∈ Semp (M) | N ⊆ P}
and Semp (M/N) are isomorphic as frames. As an application, we prove that
if R is a commutative ring and M a faithful multiplication R-module and
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QM 6= M for all maximal ideals Q of R, then R has classical Krull dimen-
sion if and only if M has classical Krull dimension. Moreover, cl.K dim (M) =
cl.K dim (R).

In this paper all rings are associative with an identity, except for some results
where R will denote a commutative ring with unity and R-Mod will denote the
category of unitary left R-modules. An R-module M is called a multiplication
module if for every submodule N of M , there exists an ideal I of R such that
N = IM .

Let M and X be R-modules. Then X is said to be M -generated if there
exists an R-epimorphism from a direct sum of copies of M onto X. The trace
of M in X is defined to be trM (X) =

∑
f∈HomR(M,X) f (M), thus X is M -

generated if and only if trM (X) = X.
If N is a fully invariant submodule of M , we write N ⊆FI M . If N is

an essential submodule of M , we write N ⊆ess M . When a module has no
non-zero fully invariant proper submodules it is called FI-simple module. An
R-module M is a duo module if N ⊆FI M for all submodules N of M .

Let U be an R-module. If M is an R-module, then U is projective relative
to M (U is M -projective) in the case for each epimorphism g : M → N and

each homomorphism f : U → N there is an homomorphism f̂ : U → M such

that g ◦ f̂ = f . An R-module M is quasiprojective if M is M -projective.
An R-module M is faithful if ann (M) = {0}, where ann (M) = {r ∈ R | rM

= 0}.

1. Preliminaries

In this section we provide the necessary material that is needed for the read-
ing of the next sections. We use the product of modules defined in [8] and we
show that if M is a multiplication R-module (with R is a ring with commuta-
tive multiplication of ideals, in particular when R being a commutative ring),
then this product of modules is commutative and associative.

Definition 1.1 ([19, Definition 1.1]). Let R be a ring and M ∈ R-Mod. Let
K be a submodule of M and L ∈ R-Mod. We define the product

KML =
∑
{f(K) | f ∈ Hom(M,L)} .

Note that if M = R, then KML is the product of left ideals of the ring R.
Note that given a submodule N of M , there exists a submodule N ⊂ M

such that N is the least fully invariant submodule of M which contains N .
In fact let N =

∑
{f(N) | f ∈ Hom(M,M)}, then N = NMM . Also notice

that if K and L are submodules of M , then∑{
f
(
K
)
| f ∈ Hom(M,L)

}
=
∑
{f(K) | f ∈ Hom(M,L)} .

Therefore KML = KML.
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Proposition 1.2 ([19, Proposition 1.3]). Let M ∈ R-Mod and K, K ′ be
submodules of M . Then:

(1) If K ⊂ K ′, then KMX ⊂ K ′MX for every X ∈ R-Mod.
(2) If X ∈ R-Mod and Y ⊆ X, then KMY ⊆ KMX.
(3) MMX = trM (X) for every X ∈ R-Mod.
(4) 0MX = 0 for every X ∈ R-Mod.
(5) KMX = 0 if and only if f(K) = 0 for all f ∈ Hom(M,X).
(6) If X,Y are submodules for any module N ∈ R-Mod, then KMX +

KMY ⊆ KM (X + Y ).
(7) If e{Ki}i∈I is a family of submodules of M , then[∑

i∈I
Ki

]
MN =

∑
i∈I

Ki MN.

(8) If {Xi}i∈I is a family of R-modules, then

KM

[⊕
i∈I

Xi

]
=
⊕
i∈I

KMXi.

Lemma 1.3. Let R be a commutative ring and M ∈ R-Mod. If M is a
multiplication module, then M generates all its submodules.

Proof. Let N ⊆ M be a submodule of M . As M is a multiplication module
then there exists an ideal I of R such that N = IM . On the other hand we
have that tMr (N) =

∑
f :M→IM f (M). Since R is a commutative ring, then for

each t ∈ I we can define the morphism ft : M → IM such that f (m) = tm.
Thus

∑
ft
ft (M) = IM . But

∑
ft
ft (M) ⊆ tMr (N). Thus N = IM ⊆ tMr (N).

So tMr (N) = N . �

Notice that tMr (N) =
∑
f :M→IM f (M) = MMN . So by Lemma 1.3, we

have that MMN = N for all submodules N of M .

Proposition 1.4. Let R be a commutative ring and M ∈ R-Mod a multipli-
cation module. Then NML = LMN for all submodules N and L of M .

Proof. We have that N = IM and L = JM , where I and J are ideals of R.
So NML =

∑
f :M→L f(IM) = I

∑
f :M→L f(M) = I tMr (L) = IL = I (JM) =

(IJ)M . As R is commutative, then (IJ)M = (JI)M = LMN . �

Notice that if R is a ring with commutative multiplication of ideals and M
is a multiplication module in the sense given by [27] we also obtain the same
result of Proposition 1.4. Also note that in this case by Proposition 1.2(7) we
have that N M

∑
i∈I Ki =

[∑
i∈I Ki

]
MN =

∑
i∈I (KiMN) =

∑
i∈I (NMKi)

for every family of submodules {Ki}i∈I of M .

Corollary 1.5. Let R be a commutative ring and M a multiplication R-module.
If N , L and K are submodules of M , then (NML)M K = NM (LMK).
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Proof. It is clear. �

Notice that the previous result is not true in general. We consider the
example in [18, Remark 1.26] in that example we have that L, K are maximal
submodules of M = E (S). Moreover KMK = S, and SMK = 0. Therefore
(KMK)M K = SMK = 0, but KM (KMK) = KMS = S. Hence we have that
(KMK)M K 6= KM (KMK).

Proposition 1.6. Let R be a commutative ring, M ∈ R-Mod a faithful mul-
tiplication module and let P a prime ideal of R such that PM  M . If I is an
ideal of R such that IM ⊆ PM , then I ⊆ P .

Proof. As PM  M , then there exists x ∈ M and x /∈ PM . If a ∈ I, then
ax ∈ IM . Thus ax ∈ PM , then by [11, Lemma 2.10] we have that a ∈ P or
x ∈ PM . Since x /∈ PM , then a ∈ P . Therefore I ⊆ P . �

Corollary 1.7. Let R be a commutative ring, M ∈ R-Mod a faithful mul-
tiplication module. Suppose that P and P ′ are prime ideals of R such that
PM  M and, P ′ M  M . If PM = P ′M , then P = P ′.

Proof. It is clear. �

Corollary 1.8. Let R be a commutative ring, M ∈ R-Mod a faithful multi-
plication module such that PM  M for all maximal ideal P of R. If Q is a
semiprime ideal of R and I is an ideal of R such that IM ⊆ QM , then I ⊆ Q.

Proof. We know that Q is a semiprime ideal, then Q = ∩α∈LPα, where every
Pα is a prime ideal of R. Hence we obtain that IM ⊆ QM ⊆ PαM for all
α ∈ L. Now by Proposition 1.6 we have that I ⊆ Pα for all α ∈ L. So
I ⊆ Q. �

Corollary 1.9. Let R be a commutative ring and M ∈ R-Mod a faithful
multiplication module such that QM  M for all maximal ideals Q of R.
Suppose that P and P ′ are semiprime ideals of R such that PM = P ′M .
Then P = P ′.

Proof. It is clear. �

Definition 1.10. A frame is a complete lattice L satisfying the distributivity
law

(∨A) ∧ b = ∨{a ∧ b | a ∈ A}
for all subset A ⊆ L and any b ∈ L.

If (X, τ) is a topological space, we will denote the (complete) lattice of open
sets of a space X by Ω (X).

Definition 1.11. A frame L is said to be spatial if it isomorphic to an Ω (X),
the frame of open sets of some topological space X.
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Definition 1.12. A quantal is a complete lattice L equipped with an associa-
tive multiplication · : L× L→ L which satisfies the followings identities

a · (∨B) = ∨b∈B (a · b) and (∨B) · a = ∨b∈B (b · a)

for all a ∈ L, and B ⊆ L.
We say L is a bilateral quantale if moreover there exists e ∈ L such that

e · a = a = a · e for all a ∈ L.

For details about concepts and terminology concerning frames, spatial frames
and quantales see [13], [20] and [23].

Finally for N ∈ R-Mod we will denote E (N) the injective hull of N .

2. Prime and semiprime modules

In this section we use the concepts of prime and semiprime modules defined
in [17] and [21], respectively. We give some properties of these modules and we

define the radical
√
N of a submodule N of M . We prove that if M is a faithful

multiplication R-module (with R a commutative ring) and QM 6= M for all

maximal ideals Q of R, then
√
IM =

√
IM for all proper ideals I of R, where√

I is the radical of the ideal I. We also prove that if R is a commutative ring
and M a faithful multiplication R-module such that QM 6= M for all maximal
ideals Q of R, then a proper submodule N of M is semiprime (prime) in M if
and only if there exists a semiprime (prime) ideal P of R such that N = PM .

Definition 2.1 ([21]). Let M ∈ R-Mod and N 6= M be a fully invariant
submodule of M . We say that N is prime in (or prime submodule of) M if
for any K, L fully invariant submodules of M we have that KML ⊆ N implies
that K ⊆ N or L ⊆ N . We say that M is a prime module if 0 is prime in M .

Note that if M = R and I is an ideal of R, then I is prime in R in the sense
of Definition 2.1 if and only if I is a prime ideal.

Remark 2.2. In [19, Proposition 1.13] it is shown that if M generates all its
fully invariant submodules and N is a maximal fully invariant submodule of M ,
then N is prime in M . So if R is a commutative ring and M is a multiplication
R-module, then by [11, Theorem 2.5] we have that every proper submodule of
M is contained in a maximal submodule of M . Moreover if N is a maximal
fully invariant submodule of M , then by [19, Proposition 1.13] and Lemma 1.3
we have that N is prime in M .

Notice that if N is a maximal submodule of M in general N is not prime in
M . In order to see this, we consider the example given in [19, Example 1.12]. In
that example the moduleM = E (S) is duo module but it is not a multiplication
module. The authors show that M has three maximal submodules but M does
not have prime submodules.

Lemma 2.3. Let R be a ring, M ∈ R-Mod and N ⊂ M a fully invariant
submodule of M . If N is a submodule of K such that K/N is a fully invariant
submodule of M/N , then K is a fully invariant submodule of M .
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Proof. It is straightforward. �

We require a goodly number of results from the literature. We include here
those results for convenience of the reader.

Lemma 2.4 ([21]). Let R be a ring, M ∈ R-Mod a quasi projective module
and K a fully invariant submodule of M . If N is a submodule of M , then K+N

N

is a fully invariant submodule of M
N .

Proposition 2.5 ([21]). Let R be a ring, M a quasi projective R-module and
N  M is a fully invariant submodule of M . If M/N is a prime module, then
N is prime in M .

Proposition 2.6 ([21]). Let R be a ring, M an R-module and N ⊆M a prime
submodule of M , then M/N is a prime module.

Corollary 2.7 ([21]). Let R be a ring, M ∈ R-Mod and N and P submodules
of M such that N ⊆ P . If P/N is prime in M/N , then M/P is a prime
module.

Corollary 2.8 ([21]). Let R be a ring, M an R-module and N a submodule
of M . Suppose that P is a proper fully invariant submodule of M such that
N ⊆ P . If P is prime in M , then P/N is prime in M/N .

Lemma 2.9 ([29]). Let R be a ring, M ∈ R-Mod and N a fully invariant
submodule of M . If M is a quasi projective module, then M/N is a quasi
projective module.

Corollary 2.10. Let R be a ring, M a quasi projective module, N ⊆FI M and
P a proper submodule of M such that N ⊆ P . If P/N ⊆FI M/N such that
M/P is a prime module, then

(i) P/N is prime in M/N .
(ii) P is prime in M .

Proof. (i) Apply Lemma 2.9 and Proposition 2.5.
(ii) Apply Lemma 2.3 and Proposition 2.5. �

Proposition 2.11. Let R be a ring, M a quasi projective module and P a fully
invariant submodule of M . The following conditions are equivalents:

(i) P is prime in M .
(ii) For any fully invariant submodules K, L of M containing P and such

that KML ⊆ P , then K = P or L = P .

The result in Proposition 2.11 was given in [19, Proposition 1.9]. But we note
that it is only necessary the hypothesis that M is a quasi projective module.
The proof is similar.

Definition 2.12 ([22]). Let R be a ring and M ∈ R-Mod. A proper fully
submodule N of M is semiprime in M (or a semiprime submodule of M) if for
any fully invariant submodule K of M such that KMK ⊆ N , then K ⊆ N .
We say M is a semiprime module, if 0 is semiprime in M .
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Notice that if M = R, then an ideal I of R is semiprime in the sense of
Definition 2.12 if and only if I is a semiprime ideal. Also note that if N is a
submodule of M , such that N is an intersection of prime submodules of M ,
then N is semiprime in M .

Proposition 2.13. Let R be a ring, M a multiplication R-module and N a
proper submodule of M . Then the following conditions are equivalents:

(i) N is semiprime in M .
(ii) If m ∈M is such that RmMRm ⊆ N , then m ∈ N .
(iii) N is an intersection of prime submodules of M .

The result in Proposition 2.13 was given in [11, Proposition 1.11] but with
M projective in σ [M ]. As M is a multiplication module, then by [27, Note
1.5] we have that M is a duo module. So we only need the hypothesis that M
is a quasi projective module and the proof of Proposition 3.13 is similar to the
proof given in [19, Proposition 1.11].

Notice that the condition (ii) implies that there exists prime submodules in
M .

Remark 2.14. The results obtained in Proposition 2.6, Corollary 2.7 and Corol-
lary 2.8 for prime submodules of M can also be given in terms of semiprime
submodules of M .

We know that if R is a commutative ring and I is an ideal of R, then the
radical of I,

√
I, is defined as:

√
I = {x ∈ R | xn ∈ I for some n ∈ N} ,

and it can be proven that
√
I = ∩{P ∈ Spec (R) | I ⊆ P}.

In the module case we give the following definition:

Definition 2.15. Let R be a ring, M an R-module and N a fully invariant
submodule of M . The radical of N in M is

√
N = ∩{P ⊆M | P is a prime in M and N ⊆ P} .

If M has no prime submodules P such that N ⊆ P , then
√
N = M . In

particular
√
M = M .

Remark 2.16. If R is a commutative ring and M is a multiplication module,
then by Remark 2.2 we have that every proper submodule N of M is contained
in a prime submodule of M . Hence we obtain that

√
N  M for all proper

submodules N of M .

Corollary 2.17. Let R be a ring, M a multiplication R-module and N a
proper fully invariant submodule of M . If

√
N 6= M , then

√
N is the minimal

semiprime submodule of M such that N ⊆
√
N .

Proof. As
√
N 6= M , then there exists P a prime module in M such that

N ⊆ P . So it is clear that
√
N is a semiprime module. Now let L be a
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semiprime module in M such that N ⊆ L. By Proposition 2.13 we have that
L = ∩i∈IQi , where Qi is prime in M for all i ∈ I. Since N ⊆ L, then N ⊆ Qi
all i ∈ I. Thus

√
N ⊆ L. �

Proposition 2.18. Let R be a ring and M an R-module. Suppose that N and
L are fully invariant submodules of M , then the following conditions hold:

(i) If N ⊆ L, then
√
N ⊆

√
L.

(ii)
√
N =

√√
N .

(iii)
√
N + L =

√√
N +

√
L.

(iv)
√
N ∩ L ⊆

√
N ∩

√
L.

(v)
√
NML ⊆

√
N ∩

√
L.

Proof. They are straightforward. �

If we define N2 =NMN . Then by induction, for any integer n > 2, we
define Nn = NMN

n−1. Note that if N is prime in M , then
√
Nn = N .

Definition 2.19. If R is a commutative ring and M is a multiplication R-
module, an element m ∈M is M -nilpotent if (Rm)

n
= 0 for some n > 0. The

M -nilradical N (M) of M is the set of all M -nilpotent elements in M .

Proposition 2.20. If R is a commutative ring and M is a multiplication R-
module, then the M -nilradical N (M) is a submodule of M .

Proof. If m ∈ N (M) and r ∈ R, then R (rm) = (Rr)m ⊆ Rm. As (Rm)
n

= 0
for some n > 0, then (R (rm))

n ⊆ (Rm)
n

= 0. Hence rm ∈ N (M). Now let
m1, m2 ∈ N (M), then (Rm1)

n1 = 0 and (Rm2)
n2 = 0 for some n1 > 0 and

n2 > 0. As M is a multiplication module, then by Proposition 1.4 we have that
(Rm2)M (Rm1) = (Rm1)M (Rm2). Thus we can use the binomial theorem. So

(Rm1 +Rm2)
n1+n2−1

is a sum of integer multiples of products (Rm1)
r

(Rm2)
s
,

where r + s = m + n − 1. We cannot have both r < n1 and s < n2. Hence
each of these products vanishes and therefore (Rm1 +Rm2)

n1+n2−1
= 0. Thus

m1 +m2 ∈ N (M). So N (M) is a submodule of M . �

Proposition 2.21. Let R be a commutative ring and M a non zero multipli-
cation R-module, then the following conditions hold:

(i) N (M) ⊆
√

0.
(ii) If N is a prime submodule of M , then ann (M/N) is a prime ideal of

R.
(iii) If M is a faithful multiplication module and Q is an prime ideal of R

such that QM 6= M , then QM is prime in M .

Proof. (i) As M 6= 0, then
√

0 6= M . So
√

0 is the intersection of all prime
submodules of M . If m ∈ N (M), then there exists n > 0 such that (Rm)

n
= 0.

So (Rm)
n ⊆ P for all prime submodule P of M . Thus Rm ⊆ P for all prime

submodules P of M . Hence m ∈
√

0. Thus N (M) ⊆
√

0.
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(ii) Suppose that I and J are ideals of R such that IJ ∈ ann (M/N). So
(IJ)M ⊆ N . Now we consider the modules K = IM , and L = JM . So by
proof of Proposition 1.4 we have that KML = (IJ)M ⊆ N . As N is prime in
M , then IM = K ⊆ N or JM = L ⊆ N . Hence I (M/N) = 0 or J (M/N) = 0.
Thus I ⊆ ann (M/N) or J ⊆ ann (M/N).

(iii) Let K and L be submodules of M such that KML ⊆ QM . Since M is a
multiplication module, then there exist I and J ideals of R such that K = IM
and L = JM . Hence (IJ)M = (IM)M (JM) ⊆ QM . So by Proposition 1.6
we have that IJ ⊆ Q. As Q is a prime ideal, then I ⊆ Q or J ⊆ Q. Thus IM
⊆ QM or JM ⊆ QM . So K ⊆ QM or L ⊆ QM . Thus QM is prime in M . �

Notice that ifN = QM , whereQ is a prime ideal ofR, thenQ = ann (M/N).
In fact as QM = N = ann (M/N)M , then by Corollary 1.7 we have that
Q = ann (M/N). Also note that if M is a finitely generated module, then by
[11, Theorem 3.1] we have that QM 6= M for all proper ideals Q of R. So if M
is as in (iii) and M is finitely generated, then QM is a prime submodule in M
for all prime ideals Q of R.

Corollary 2.22. Let R be a commutative ring, M ∈ R-Mod is a faithful
multiplication module and Q is an prime ideal of R. Suppose that QM 6= M .
Then Q = ann (M/QM).

Proof. By Proposition 2.21 we have that N = QM is a prime submodule of M
and ann (M/N) is a prime ideal of R . As QM = N = ann (M/N)M , then by
Corollary 1.7 we have that Q = ann (M/N) = ann (M/QM). �

Note that we can obtain similar results to Proposition 2.21(ii), (iii) and
Corollary 2.22 in terms of semiprime modules in the following propositions.

Proposition 2.23. Let R be a commutative ring and let M be a multiplication
R-module, then the following conditions hold:

(i) If N is a semiprime submodule of M , then ann (M/N) is a semiprime
ideal of R.

(ii) If M is a faithful multiplication R-module and Q is a semiprime ideal
of R such that QM 6= M , then QM is semiprime in M .

Corollary 2.24. Let R be a commutative ring, M ∈ R-Mod a faithful multi-
plication module and Q a semiprime ideal of R. Suppose that QM 6= M . Then
Q = ann (M/QM)M .

Proposition 2.25. Let R be a commutative ring and let M be a faithful
multiplication R-module. Suppose that QM 6= M for all maximal ideals Q
of R. If P = ∩α∈LPα with Pα prime ideal of R for every α ∈ L, then
PM = ∩α∈L (PαM).

Proof. As M is a multiplication module, then by Remark 2.16 we have that
PαM 6= M for all α ∈ L. If we put N = PM and N ′ = ∩α∈L (PαM), then
PM ⊆ PαM for all α ∈ L. Thus N ⊆ N ′. On the other hand, by Proposition
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2.13 we have that N ′ is semiprime in M . Moreover we know that N ′ =
ann (M/N ′)M . Thus (∩α∈LPα)M ⊆ ann (M/N ′)M . Now by Proposition
2.23 we have that ann (M/N ′) is a semiprime ideal of R. Thus by Proposition
1.8 we have that ∩α∈LPα ⊆ ann (M/N ′). As ann (M/N ′)

(
M
N ′

)
= 0, then

ann (M/N ′)M ⊆ N ′ = ∩α∈L (PαM). Hence ann (M/N ′)M ⊆ PαM for all
α ∈ L. So by Proposition 1.6 we have that ann (M/N ′) ⊆ Pα for all α ∈ L.
Thus ann (M/N ′) ⊆ ∩α∈LPα. So we have that ∩α∈LPα = ann (M/N ′). Thus
PM = (∩α∈LPα)M = ann (M/N ′)M . �

Corollary 2.26. Let R be a commutative ring and let M be a faithful mul-
tiplication R-module. Suppose that QM 6= M for all maximal ideals Q of R.
Then a proper submodule N of M is semiprime (prime) in M if and only if
there exists a semiprime (prime) ideal P of R such that N = PM .

Proof. ⇒) Suppose that N is semiprime (prime) in M , then by Proposition
2.13, we have that N = ∩α∈LNα, where every Nα is prime in M . Now by
Proposition 2.23 (Proposition 2.21) we know that ann (M/Nα) is a semiprime
(prime) ideal of R and, Nα = ann (M/Nα)M . Thus N = ∩α∈LNα = N =
∩α∈L [ann (M/Nα)M ] (or N = ann (M/N)M). By Proposition 2.25 we have
that N = [∩α∈Lann (M/Nα)]M (or N = ann (M/N)M). Moreover,

∩α∈Lann (M/Nα) (ann (M/N))

is a semiprime (prime) ideal of R.
⇐) As P is a semiprime (prime) ideal of R, then P = ∩i∈T Pi with every

Pi is a prime ideal of R. Then by Proposition 2.25 we have that N = PM =
∩i∈T (PiM). By Proposition 2.21 we have that PiM is prime in M . Therefore
N is semiprime in M . �

Theorem 2.27. Let R be a commutative ring and M a faithful multiplication
R-module and QM 6= M for all maximal ideal Q of R. Then

√
IM =

√
IM

for all proper ideals I of R. Where
√
I is the prime radical of I.

Proof. Suppose that
√
I = ∩α∈LPα, where every Pα is a prime ideal of R

with I ⊆ Pα for all α ∈ L. Now by Proposition 2.25 we have that
√
IM =

∩α∈L (PαM). As PαM is prime in M , then
√
IM is semiprime in M . Since I ⊆√

I, then IM ⊆
√
IM . Therefore

√
IM ⊆

√
IM . On the other hand if we put

N = {N ′ ⊂M | N ′ is prime in M and IM ⊆ N ′}, then
√
IM = ∩N ′∈NN

′.
Let N ′ ∈ N . So N ′ = P ′M with P ′ prime ideal of R. Thus IM ⊆ P ′M .
By Proposition 1.6 we have that I ⊆ P ′. Therefore

√
I ⊆ P ′. Hence

√
IM ⊆

P ′M = N ′ for all N ′ ∈ N . Thus
√
IM ⊆

√
IM . �

Notice that if N is a proper submodule of M , then N = IM for some proper
ideal I of R. So by Theorem 2.27 we have that

√
N =

√
IM .
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3. Zariski topology for multiplication modules

In this section we give the Zariski Topology for a module multiplication M .
We describe open sets and closed sets of this topology and we give a basis of
open sets for the Zariski topology.

We denote Spec (M) = {P | P is a prime submodule of M}.
Several of the followings results have been given recently. We include here

those results for convenience of the reader.

Proposition 3.1 ([1], [12]). Let R be a ring and M a multiplication R-module.
Then (Spec (M) , T ) is a topological space, where

T = {U (N) | N ∈ Sub (M)} is the topology and

U (N) = {P ∈ Spec (M) | N * P} are open sets.

Remark 3.2. As U (N) = U
(√

N
)

for all N ∈ Sub (M), then:

T = {U (N) | N ∈ Semp (M)} .
Thus we can consider the open sets as U (N) withN semiprime inM orN = M .

Following to [5] we say that T is the Zariski topology and Spec (M) is called
the prime spectrum of M .

Lemma 3.3 ([1], [12]). Let R be a ring and M an R-module. If N and L are
submodules of M , then the following conditions hold:

(i) U (L) ∩ U (N) = U (LMN).

(ii) U (L) = ∅ if and only if L ⊆
√

0.
(iii) U (L) = Spec (M) if and only if L = M .

(iv) U (L) = U (N) if and only if
√
L =

√
N .

Notice that if M is a semiprime module, then 0 = ∩P∈Spec(M)P . Thus√
0 = 0.
Let R be a commutative ring and M a multiplication R-module. For each

subset E of M , we denote V (E) = {P ∈ Spec (M) | E ⊆ P}.
Notice that if {Ni}i∈I is a family of submodules of M , then

V (∪i∈INi) = V

(∑
i∈I

Ni

)
.

Proposition 3.4 ([1], [12]). Let R be a ring and let M be an R-module, then
the following conditions hold:

(i) If E is a subset of M and 〈E〉 =
∑
m∈E Rm, then V (E) = V (〈E〉) =

V
(√
〈E〉
)

.

(ii) V (0) = Spec (M) and V (M) = ∅.
(iii) If {Ei}i∈I is a family of subsets of M , then V (∪i∈IEi) = ∩i∈IV (Ei).
(iv) If N and L are submodules of M , then V (N ∩ L) = V (NML) =

V (N) ∪ V (L).
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Notice that if 〈E〉 ∈ Sub (M), then the complement V (〈E〉)C of V (〈E〉) is
the set U (〈E〉). Thus the results of Proposition 3.4 show that the sets V (〈E〉)
satisfy the axioms for closed sets in the Zariski topology. We also note that

V (〈{m}〉)C = V (Rm)
C

= U (Rm) for all m ∈M .

Proposition 3.5 ([12]). Let R be a ring and let M be an R-module. Then
B = {U (Rm) | m ∈M} is a basis of open sets for the Zariski topology.

4. Compact, irreducible and dense subspaces

In this section we characterize compact sets of the form U (N) in terms of
finitely generated submodules of M . We also characterize irreducible sets of
the form U (N) in terms of finitely uniform submodules of M .

Proposition 4.1 ([1], [12]). Let R be a commutative ring and let M be a
multiplication R-module. Then the following conditions are equivalents:

(i) M is finitely generated.
(ii) The topological space (Spec (M) , T ) is compact (that is, every open cov-

ering of Spec (M) has a finite subcover).

Corollary 4.2. Let R be a commutative ring and M a multiplication R-module.
If M is finitely generated and N is a submodule of M such that N is a direct
summand of M , then U (N) is compact in (Spec (M) , T ).

Proof. As N is a direct summand of M then there exists a submodule L of M
such that N ⊕ L = M . Now let {U (Rmi)}i∈I be an open cover of U (N), and
{U (Rmj)}j∈J an open cover of U (L). We can suppose that U (N)∩U (Rmi) 6=
∅, and U (L) ∩ U (Rmj) 6= ∅ for all i, j such that i ∈ I and j ∈ J . So it is
clear that {U (N) ∩ U (Rmi)}i∈I , and {U (L) ∩ U (Rmj)}j∈J are open covers of

U (N) and U (L), respectively.
We claim that [U (N) ∩ U (Rmi)] ∩ [U (L) ∩ U (Rmj)] = ∅ for all i, j such

that i ∈ I and j ∈ J . In fact let P ∈ [U (N) ∩ U (Rmi)] ∩ [U (L) ∩ U (Rmj)],
then P ∈ U (N) ∩ U (L). So N * P and L * P . As P is a prime submodule
of M then NML * P . Since M is a duo module, then NML ⊆ N ∩ L =
0. Therefore NML ⊆ P for all P ∈ Spec (M) is a contradiction. Hence
[U (N) ∩ U (Rmi)] ∩ [U (L) ∩ U (Rmj)] = ∅.

Now Spec (M) = U (M) = U (N ⊕ L) = U (N) ∪ U (L), then

{U (N) ∩ U (Rmi)}i∈I ∪ {U (L) ∩ U (Rmj)}i∈J
is an open cover of Spec (M). By Proposition 4.1 we have that Spec (M) is
compact. So the cover {U (N) ∩ U (Rmi)}i∈I ∪ {U (L) ∩ U (Rmj)}j∈J has a

finite subcover. Let {U (N) ∩ U (Rmi)}ni=1 ∪ {U (L) ∩ U (Rmj)}rj=1 be a finite

subcover such that ∪ni=1 (U (N) ∩ U (Rmi)) ∪ {U (L) ∩ U (Rmj)}ri=1.
As [U (N) ∩ U (Rmi)] ∩ [U (L) ∩ U (Rmj)] = ∅ for all i = 1, 2, . . . , n and

j = 1, 2, . . . , r, then

{U (N) ∩ U (Rmi)}ni=1
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is a finite subcover of {U (N) ∩ U (Rmi)}i∈I .
So U (N) = ∪ni=1 [U (N) ∩ U (Rmi)] ⊆ ∪ni=1U (Rmi). Thus U (N) is com-

pact. �

Proposition 4.3 ([1], [12]). Let R be a commutative ring and M a multipli-
cation R-module. If N is a submodule of M such that U (N) is compact, then
there exists a finitely generated submodule L of N such that U (N) = U (L).

Proposition 4.4 ([1], [12]). Let R be a commutative ring and M a multipli-
cation R-module. If E is an open subset of Spec (M) such that E is compact,
then there exists a finitely generated submodule L of M such that E = U (L).

The following definition was given in [9, II-4-1].

Definition 4.5. A topological space X is said to be irreducible if X 6= ∅, and
that the intersection of two non-empty open sets of X be always non-empty.
A non-empty subset Y of X is an irreducible set in X if the subspace Y of X
is irreducible.

Proposition 4.6. Let R be a commutative ring and M a multiplication R-
module. Suppose that M is a semiprime module. If N is a submodule of M
such that U (N) is an irreducible set in (Spec (M) , T ), then N is a uniform
module.

Proof. Let K 6= 0 and L 6= 0 be proper submodules of N . We claim that
U (K) 6= ∅, and U (L) 6= ∅. In fact if U (K) = ∅, then by Lemma 3.3(ii) we

have that K ⊆
√

0 = ∩P∈Spec(M)P . As M is a semiprime module, then 0 is a

semiprime submodule of M . So
√

0 = ∩P∈Spec(M)P = 0. Thus K = 0 it is a
contradiction. Analogously U (L) 6= ∅. Since U (K) ⊆ U (N) ; U (L) ⊆ U (N)
and U (N) is irreducible, then U (K)∩U (L) 6= ∅. By Lemma 3.3(i) we have that
U (KML) 6= ∅. HenceKML 6= 0. SinceM is a duo module, thenNML ⊆ N∩L.
Thus N ∩ L 6= 0. So N is a uniform module. �

Notice that if R is a commutative ring and M is a multiplication R-module
such that U (M) = Spec (M) is an irreducible set in (Spec (M) , T ), then M is
a uniform module.

Proposition 4.7. Let R be a commutative ring and M a multiplication R-
module. If N is a submodule of M and

√
0 is prime in M , then U (N) is an

irreducible set in (Spec (M) , T ).

Proof. We denote
√

0 = Q. Let U (K) 6= ∅ and U (L) 6= ∅ be open sets such
that U (K) ⊆ U (N) and U (L) ⊆ U (N). So K 6= 0 and L 6= 0. By Lemma
3.3(i) we have that U (K) ∩ U (L) = U (KML). Now if U (KML) = ∅, then
KML ⊆ Q. As Q is prime in M , then K ⊆ Q or L ⊆ Q. On the other hand
we have that Q =

√
0 = ∩P∈Spec(M)P . Hence Q ⊆ P for all P ∈ Spec (M).

Thus U (Q) = ∅. Since K ⊆ Q or L ⊆ Q, then U (K) ⊆ U (Q) = ∅ or
U (L) ⊆ U (Q) = ∅, is a contradiction. Thus U (K) ∩ U (L) = U (KML) 6= ∅.
Hence U (N) is irreducible. �
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Remark 4.8. If M is a prime and duo module, then M is a uniform module.
In fact let N and L be submodules of M such that N ∩ L = 0. As M is
a duo module, then NML ⊆ N ∩ L = 0. Since M is a prime module, then
N = 0 or L = 0. So M is a uniform module. Moreover, when M is a prime
multiplication R-module we know that 0 is prime in M . So

√
0 = 0. Thus

U (N) is an irreducible set in (Spec (M) , T ) for all non-zero submodules N of
M .

Definition 4.9. A subset B of a topological space X is said to be dense in X
if U ∩B 6= ∅ for all open sets ∅ 6= U of X.

Proposition 4.10. Let R be a commutative ring and M a multiplication R-
module. Suppose that

√
0 is a prime submodule of M . If N 6= 0 is a uniform

submodule of M such that U (N) 6= ∅, then U (N) is dense in the topological
space (Spec (M) , T ).

Proof. Let U (L) 6= ∅ be an open set of the topological space (Spec (M) , T ).
Suppose that U (N)∩U (L) = ∅. Then by Lemma 3.3(i) we have that U (NML)

= ∅. Hence NML ⊆
√

0. As
√

0 is a prime submodule, then N ⊆
√

0 or
L ⊆

√
0. Hence U (N) = ∅ or U (L) = ∅ is a contradiction. Therefore

U (N) ∩ U (L) 6= ∅. So U (N) is dense. �

Note that Proposition 4.10 is not true in general. We consider the following
example:

Example 4.11. Let R = Z, p be a prime number and M = Zpn with n ≥ 2.
We know that M is a Z-multiplication module. It is clear that pZpn is a uniform
submodule of M . Moreover pZpn is the only one prime submodule of M . So√
pZpn = pZpn . Thus we have that U (pZpn) = ∅. Therefore U (pZpn) is not

dense in the topological space (Spec (M) , T ).

Corollary 4.12. Let R be a commutative ring and let M be a prime multipli-
cation R-module. If N 6= 0 is a uniform submodule of M , then U (N) is dense
in the topological space (Spec (M) , T ).

Proof. We claim that U (N) 6= ∅. In fact if U (N) = ∅, then by Lemma

3.3(ii) we have that N ⊆
√

0. Now as M is a prime module, then 0 is a

prime submodule of M . Thus
√

0 = ∩P∈Spec(M)P = 0. Hence N = 0 is a
contradiction. Thus U (N) 6= ∅. So by Proposition 4.10 we have the result. �

Note that in Example 4.11, the module M = Zpn is not a prime module.

5. Main results

We remember that in the introduction we denoted Semp (M) = {N ⊂ M |
N is semiprime submodule of M} ∪ {M} for every M ∈ R-mod. In this
section we prove that {Semp (M) ,∧,∨} is a frame for every ring R and every
multiplication R-module M . We also prove that if R is a commutative ring and
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M a multiplication R-module, then Sub (M) is a bilateral quantal. Moreover
we prove Semp (M/N) is a spatial frame for all submodules N of M . When M
is a quasi projective module we obtain that ↑(N)Semp(M) and Semp (M/N) are
isomorphic as frames. On the other hand when M is a faithful multiplication
R-module and QM 6= M for all maximal ideals Q of R, then (i) The topological
spaces Spec (R), and Spec (M) are homeomorphic, (ii) Semp (R) ∼= Semp (M)
as frames, (iii) cl.K dim (M) = cl.K dim (R). As a special result we obtain
that Ψ (M) = {N ⊆M | N +AnnM (Rn) = M, ∀n ∈ N} is a spatial frame for
every multiplication R-module M . The set Ψ (M) was studied by [15]. Finally
we show that if R is a ring and (Spec (M) , T ) is a noetherian topological space,
then M has a classical Krull dimension.

Remark 5.1. When R is a commutative ring and M is a multiplication R-
module, then by Proposition 1.2(7) we have that

N M

∑
i∈I

Ki =

[∑
i∈I

Ki

]
MN =

∑
i∈I

(KiMN) =
∑
i∈I

(NMKi)

for every {Ki}i∈I family of submodules of M and for all submodules N of M .

Proposition 5.2. Let R be a commutative ring and M a multiplication R-
module, then {Sub (M) ,≤,∨,∧,M, 0, M } is a bilateral quantal.

Proof. It is clear that {Sub (M) ,≤,∨,∧,M, 0} is a complete lattice where “≤”
denotes ⊆. As R is a commutative ring, then by Corollary 1.5 we have that
the product M : Sub(M) × Sub(M) → Sub(M) is associative. Moreover
by Remark 5.1 we obtain that NM

∑
i∈IKi =

∑
i∈I (NMKi) for every {Ki}i∈I

family of submodules of M and for all submodules N and L of M . Moreover
by Proposition 1.2(7) we have that:[∑

i∈I
Ki

]
M

N =
∑
i∈I

(KiMN) .

Thus by [15, Definition 2.4] we have that{Sub (M) ,≤,∨,∧,M, 0, M }, is a
quantal. Now by Lemma 1.3 we have that MMN = tMr (N) = N . As M is
a duo module, then N is a fully invariant submodule of M . So NMM = N .
Hence {Sub (M) ,≤,∨, 0, M } is a bilateral quantal. �

Notice that it is easy to prove that N ∧N ′ = N ∩N ′ and N ∨N ′ =
√
N +N ′

are the meet and join of lattice Semp (M). Moreover this lattice is complete.

Theorem 5.3. Let R be a ring and let M be a multiplication R-module. Then
{Semp (M) ,∧,∨} is a frame.

Proof. We know that {Semp (M) ,∧,∨} is a complete lattice. Now let N ∈
Semp (M), and {Ni}i∈I be a family of submodules in Semp (M). We will
prove that N ∧ (∨i∈INi) = ∨i∈I (N ∧Ni).
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As N∧(∨i∈INi) = N∩
(√∑

i∈I Ni
)

and ∨i∈I (N ∧Ni) =
√∑

i∈I (N ∩Ni).
If N = M , then we have the result. Suppose that N  M . It is clear that N ∩
Nj ⊆ N ∩

(√∑
i∈I Ni

)
for all j ∈ I. Thus

∑
i∈I (N ∩Ni) ⊆ N ∩

(√∑
i∈I Ni

)
.

By Proposition 2.13 we have that N ∩
(√∑

i∈I Ni
)

is an intersection of prime

submodules of M . So
√∑

i∈I (N ∩Ni) ⊆ N ∩
(√∑

i∈I Ni
)
. Now let P prime

in M such that
∑
i∈I (N ∩Ni) ⊆ P . Thus N ∩ Ni ⊆ P for all i ∈ I. Since

N is a fully invariant submodule of M , we have that NMNi ⊆ N ∩ Ni. So
NMNi ⊆ P . As P is prime in M , then N ⊆ P or Ni ⊆ P . If N ⊆ P , then
N∩

(√∑
i∈I Ni

)
⊆ P . Hence N∩

(√∑
i∈I Ni

)
⊆
√∑

i∈I (N ∩Ni). If N * P ,

then Ni ⊆ P for all i ∈ I. Thus
∑
i∈I Ni ⊆ P . So

√∑
i∈I Ni ⊆ P . Therefore

N∩
(√∑

i∈I Ni
)
⊆ P . Hence N∩

(√∑
i∈I Ni

)
⊆
√∑

i∈I (N ∩Ni). Therefore

N ∩
(√∑

i∈I Ni
)

=
√∑

i∈I (N ∩Ni). So N ∧ (∨i∈INi) = ∨i∈I (N ∧Ni). �

Note that if M is a multiplication R-module and N ∈ Semp (M), then the
set ↑(N)Semp(M) is a subframe of Semp (M).

Remark 5.4. If R is a ring we know that every semiprime ideal is an intersection
of prime ideals of R. Therefore we have that {Semp (R) ,∧,∨} is a frame for
every ring R.

We denote

Ω (Spec (M)) = {T ,⊆ ,∪,∩}

the frame of open subsets of Spec (M), where T is the Zariski topology of
Spec (M).

Theorem 5.5. Let R be a ring and M a multiplication R module. Then

Semp (M) ∼= Ω (Spec (M))

as frames.

Proof. We define H : Semp (M) → Ω (Spec (M)) such that H (N) = U (N).
We claim that Ψ is an order isomorphism. In fact suppose that N1 ⊆ N2. If
P ∈ U (N1), then N1 * P . Thus N2 * P . So Ψ (N1) ⊆ H (N2). Moreover
if H (N1) = H (N2), then N1 = N2. Thus H is injective. Now let U (N) ∈
Ω (Spec (M)), by Remark 3.2 we have that N is a semiprime in M . So H
is surjective. Therefore H is bijective and H−1 (U (N)) = N . Now suppose
that U (N1) ⊆ U (N2). Thus if P is prime in M such that N2 ⊆ P , then
N1 ⊆ P . As N1 and N2 are semiprime modules, then by Proposition 2.13 we
have that N1 ⊆ N2. So H is an order isomorphism, now by [26, Chapter III,
Proposition 1.1] we have that H is a lattice isomorphism. Hence H is a frame
isomorphism. �

Corollary 5.6. Let R be a ring and let M be a multiplication R-module. Then
Semp (M/N) is a spatial frame for all submodules N of M .
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Proof. As M is a multiplication R-module, then M/N is a multiplication mod-
ule. So by Theorem 5.5 we have that Semp (M/N) ∼= Ω (Spec (M/N)) for all
submodules N of M . Hence Semp (M/N) is a spatial frame for all submodules
N of M . �

Lemma 5.7. Let R be a ring and let M be a multiplication R-module. Suppose
that M is quasi projective and N is a submodule of M . Then Semp (M/N) =
{P/N | P ∈ Semp (M)}.

Proof. As M is a multiplication module, then M is a duo module. By Remark
2.14 we have that Semp (M/N) = {P/N | P ∈ Semp (M)}. �

Proposition 5.8. Let R be a ring and M a multiplication R-module. Sup-
pose that M is quasi projective and N is a semiprime submodule of M . Then
↑(N)Semp(M) and Semp (M/N) are isomorphic as frames.

Proof. By Lemma 5.7 we have that Semp (M/N) = {P/N | P ∈ Semp (M)}.
So we can define the morphism φ:↑(N)Semp(M) → Semp (M/N) such that
φ (P ) = P/N . It is clear that φ is a bijective morphism. Now let P , P ′ ∈
Semp (M), then φ (P ∧ P ′) = φ (P ∩ P ′) = (P ∩ P ′) /N = (P/N) ∩ (P ′/N) =

φ (P )∧ φ (P ′). On the other hand, we notice that
√
P+P ′

N =
√

P
N + P ′

N . There-

fore φ (P ∨ P ′) = φ
(√
P + P ′

)
= φ (P ) ∨ φ (P ′). Hence φ is a morphism

of frames. Analogously we can prove that the inverse φ−1 is a morphism of
frames. So ↑(N)Semp(M) ∼= Semp (M/N) as frames. �

By Proposition 5.8 we note that when M is a quasi projective multiplication
module and N is a semiprime submodule of M , then the frame Semp (M/N)
can be considered as a subframe of Semp (M). So we have the following propo-
sition:

Corollary 5.9. Let R be a ring and let M be a multiplication R-module. If
M is a quasi projective module, then the subframe ↑(N)Semp(M) of Semp (M)
is a spatial frame for all semiprime submodules N of M .

Proof. It follows from Proposition 5.8 and Corollary 5.6. �

Theorem 5.10. Let R be a commutative ring and M a faithful multiplication
R-module and QM 6= M for all maximal ideals Q of R. Then the topological
spaces Spec (R), and Spec (M) are homeomorphic.

Proof. We consider the function ϕ : Spec (R) → Spec (M) such that ϕ (I) =
IM . By Proposition 2.21 we know that IM is prime in M . Moreover by
Corollary 1.11 we have that ϕ is injective. Now if N ∈ Spec (M), then by
Proposition 2.21 we know that N = ann (M/N)M and ann (M/N) is a prime
ideal of R. Thus ϕ is an epimorphism. We will show that ϕ is continuous.
Let U (N) be an open set of the Zariskis topology of Spec (M). As M is a

multiplication module and U (N) = U(
√
N), then we can suppose that N is a
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semiprime module. Hence N = IM with I is a semiprime ideal of R. We claim
that

ϕ−1 (U (N)) = ϕ−1 (U (IM)) = {J ∈ Spec (R) | ϕ (J) ∈ U (IM)}
= {J ∈ Spec (R) | JM ∈ U (IM)}
= {J ∈ Spec (R) | IM * JM} .

Now by Proposition 1.8 we have that {J ∈ Spec (R) | I * J} = U (I). So
ϕ−1 (U (N)) is an open set of Zariski topology of Spec (R). Analogously we
show that if U (I) is an open set of Spec (R), then ϕ (U (I)) is an open set
of Spec (M). Therefore Spec (R) and Spec (M) are homeomorphic topological
spaces. �

Theorem 5.11. Let R be a commutative ring and let M be a faithful mul-
tiplication R-module and QM 6= M for all maximal ideals Q of R. Then
Semp (R) ∼= Semp (M) as frames.

Proof. We define ϕ : Semp (R) → Semp (M) such that ϕ (I) = IM . We
claim that ϕ is an order isomorphism. In fact let I1, I2 ∈ Semp (R) such
that I1 ⊆ I2, then I1M ⊆ I2M . So ϕ (I1) ⊆ ϕ (I2). Now if ϕ (I1) = ϕ (I2),
then I1M = I2M . So by Corollary 1.9 we have that I1 = I2. Thus ϕ is
injective. Now let N ∈ Semp (M). As M is a multiplication module then by
Proposition 2.23 and Proposition 2.24 we have that ann (M/N) M = N and
ann (M/N) is a semiprime ideal of R. So ϕ is surjective. Thus ϕ is bijective
and ϕ−1 (N) = ann (M/N). Now suppose that N1, N2 ∈ Semp (M) such
that N1 ⊆ N2, then ann (M/N1)M ⊆ ann (M/N2)M . So by Proposition
1.8 we have that ann (M/N1) ⊆ ann (M/N2). Thus ϕ−1 (N1) ⊆ ϕ−1 (N2).
By [26, Chapter III Proposition 1.1] we have that ϕ is a lattice isomorphism.
Hence ϕ is a frame isomorphism. �

Corollary 5.12. Let R be a commutative ring and let M be a faithful multi-
plication R-module, and QM 6= M for all maximal ideals Q of R. Then there
exists a bijective correspondence between Spec (R) and Spec (M).

Proof. Let P be a prime ideal of R. By Proposition 2.21 we have that PM is
prime in M . Thus the restriction ϕ|Spec(R) : Spec (R)→ Spec (M) is injective.
Now if N is prime in M , then by Proposition 2.21 we have that ann (M/N)
is a prime ideal of R. Moreover N = ann (M/N)M . Therefore ϕ|Spec(R) is
surjective. So ϕ|Spec(R) is bijective. �

From Definition 1.1 we note that it is natural to consider the annihilator of
a module. The next definition was given in [7].

Definition 5.13. Let M and K be R-modules. The annihilator of K in M is
defined as:

AnnM (K) = ∩{Ker (f) | f ∈ Hom (M,K)} .
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Notice that AnnM (K) is a fully invariant submodule of M and it is the
greatest submodule of M such that AnnM (K)M K = 0.

In [15, Section 5] the authors define Ψ (M), which is a frame given by con-
dition on annihilators. They show that Ψ (M) is a spatial frame. When M is
a duo module (in particular a multiplication module) we have that

Ψ (M) = {N ⊆M | N +AnnM (Rn) = M, ∀n ∈ N} .

In [15] the following is shown: 1) If N ∈ Ψ (M), then N2 = N [15, Proposi-
tion 5.3]. 2) If K,N ∈ Ψ (M), then K ∩N = KMN [15, Proposition 5.4]. 3) If
{Ni}i∈J ⊆ Ψ (M), then

∑
i∈J Ni ∈ Ψ (M) [15, Proposition 5.5]. To prove those

results the authors contend that NM
∑
i∈J Ki =

∑
i∈J NMKi, happens when

M is projective in σ[M ]. But when M is a multiplication R-module (with R a
commutative ring) by Remark 5.1 we do not need that hypothesis to prove the
same results.

Theorem 5.14. Let R be a commutative ring. If M is a multiplication module,
then Ψ (M) is a spatial frame.

Proof. It is similar to the proof given in [15, Theorem 5.6]. �

Note that if R is a ring with a commutative multiplication of ideals and M
is a R-multiplication module, then we have that Ψ (M) is a spatial frame.

The classical Krull dimension of a module M

The classical Krull dimension of a poset (X, ≤) was defined in [2]. We
use the poset (Spec (M) ,⊆) and we give the classical Krull dimension for an
R-module M .

Set Spec−1 (M) = ∅, and for an ordinal α > −1 define

Specα (M) =
{
P ∈ Spec (M) | P ≤ Q ∈ Spec (M)⇒ Q ∈

⋃
β<α

Specβ (M)
}

.

If an ordinal α with Specα (M) = Spec (M) exists, then the smallest of
such ordinals is called the classical Krull dimension of M ; it is denoted by
cl.K dim (M).

Notice that if M is a multiplication module, then by Remark 2.2 we have
that M has maximal submodules which are prime submodules of M .

So Spec0 (M) = {P ∈ Spec (M) | P is a maximal submodule of M}.

Remark 5.15. Let M be an R-module. Then by [2, Proposition 1.4] we have
that M has classical Krull dimension if and only if the poset (Spec (M) ,⊆) is
noetherian.

Notice that if M is a noetherian R-module, then the poset (Spec (M) ,⊆) is
noetherian, therefore M has classical Krull dimension.

Theorem 5.16. Let R be a commutative ring and let M be a faithful mul-
tiplication R-module and QM 6= M for all maximal ideals Q of R. Then R
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has classical Krull dimension if and only if M has classical Krull dimension.
Moreover. cl.K dim (M) = cl.K dim (R).

Proof. By Theorem 5.11 and Corollary 5.12 we have that ϕ (P1) ⊆ ϕ (P2) ⇔
P1 ⊆ P2 where P1 and P2 are prime ideals of R. Therefore ϕ (Specα (M)) =
Specα (R) for all ordinal α. Moreover ϕ is injective. Hence cl.K dim (M) =
δ ⇔ cl.K dim (R) = δ. �

The following definition was given in [12, Definition 3.26].

Definition 5.17. A topological space (X, T ) is said to be noetherian if and
only if every ascending (descending) chain of open (closed) subsets is stationary,
equivalently if and only if every open subset is compact.

Proposition 5.18. Let R be a ring and let M be a multiplication R-module.
Suppose that (Spec (M) , T ) is a noetherian topological space. Then M has
classical Krull dimension.

Proof. If P1 ⊆ P2 ⊆ · · · ⊆ Pn · · · is a chain in Spec (M), then U (P1) ⊆
U (P2) ⊆ · · · ⊆ U (Pn) · · · is a chain in (Spec (M) , T ). As the Zariski Topol-
ogy is noetherian, then there exists a natural number k such that U (Pk) =
U (Pk+1). Now if Pk  Pk+1, then Pk+1 ∈ U (Pk), a contradiction. Therefore
Pk = Pk+1. So (Spec (M) ,⊆) is a noetherian set. Thus M has classical Krull
dimension. �
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