ON ϕ-SEMIPRIME SUBMODULES

Mahdief Ebrahimpour and Fatemeh Mirzaee

Abstract

Let R be a commutative ring with non-zero identity and M be a unitary R-module. Let $S(M)$ be the set of all submodules of M and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. We say that a proper submodule P of M is a ϕ-semiprime submodule if $r \in R$ and $x \in M$ with $r^{2} x \in P \backslash \phi(P)$ implies that $r x \in P$. In this paper, we investigate some properties of this class of sub-modules. Also, some characterizations of ϕ-semiprime submodules are given.

1. Introduction

Throughout this paper R is a commutative ring with non-zero identity and M is a unitary R-module. We will denote the set of submodules of M by $S(M)$. Let I be an ideal of R and N be a submodule of M. Then \sqrt{I} denotes the radical of I and $(N: M)=\{r \in R \mid r M \subseteq N\}$, which is clearly an ideal of R.

Various generalizations of prime (resp., primary) ideals are studied in [2-$6,9,11-13,21]$. the class of prime submodules as a generalization of the class of prime ideals has been studied by many authors. For example see $[1,14,17]$. Then many generalizations of prime submodules were studied such as weakly prime (resp., primary) submodules in [10, 18], almost prime (resp., primary) submodules in [16], 2-absorbing submodules in [22], classical prime (resp., primary) submodules in $[7,8]$ and semiprime submodules in [19].

In this paper we extend the concept of semiprime submodules. Let ϕ : $S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. A proper submodule P of M is called ϕ semiprime if whenever $r \in R$ and $x \in M$ with $r^{2} x \in P \backslash \phi(P)$ implies $r x \in P$. Since $P \backslash \phi(P)=P \backslash(P \cap \phi(P))$, without loss of generality throughout the paper we will assume that $\phi(P) \subseteq P$. For two functions $\psi_{1}, \psi_{2}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ we write $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(N) \subseteq \psi_{2}(N)$ for each $N \in S(M)$.

In the rest of the paper we use the functions $\phi_{\emptyset}(N)=\emptyset$ for semiprime submodules, $\phi_{0}(N)=0$ for weakly semiprime submodules, $\phi_{1}(N)=N$ for any submodule, $\phi_{2}(N)=(N: M) N$ for almost semiprime submodules, $\phi_{n}(N)=$ $(N: M)^{n-1} N,(n \geq 3)$ for n-almost semiprime submodules and $\phi_{\omega}(N)=$

[^0]$\cap_{i=1}^{\infty}(N: M)^{i} N$ for ω-semiprime submodules. Observe that $\phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq$ $\cdots \leq \phi_{n+1} \leq \phi_{n} \leq \cdots \leq \phi_{2} \leq \phi_{1}$.

Among many results concerning the properties of ϕ-semiprime submodules some characterizations of these submodules will be investigated in Theorems 2.5 and 2.12. In Theorem 2.22, it is proved that if F is a flat R-module and P is a weakly semiprime submodule of M such that $F \otimes P \neq F \otimes M$, then $F \otimes P$ is a weakly semiprime submodule of $F \otimes M$. Also we show that if F is a faithfully flat R-module and N is a submodule of M, then N is a weakly semiprime submodule of M if and only if $F \otimes N$ is a weakly semiprime submodule of $F \otimes M$.

2. ϕ-semiprime submodules

2.1. Some properties of ϕ-semiprime submodules

Every semiprime submodule is ϕ-semiprime. But the converse is not true in general. For example, consider the \mathbb{Z}-module $M=\mathbb{Z}_{24}$ and the submodule $N=8 \mathbb{Z}$. Also let $\phi=\phi_{2}$. Since $\phi_{2}(N)=(N: M) N=N$, so N is a $\phi-$ semiprime submodule of M. But N is not semiprime. Because $2^{2} \overline{2} \in N$ but $2 \overline{2} \notin N$.

Next we assert that under some conditions ϕ-semiprime submodules are semiprime.

Theorem 2.1. Let R be a commutative ring and M be an R-module. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function and P be a ϕ-semiprime submodule of M. If $(x+(P: M))^{2} P \nsubseteq \phi(P)$ for all $x \in R \backslash(P: M)$, then P is a semiprime submodule of M.

Proof. Let $r^{2} m \in P$, where $r \in R$ and $m \in M$. If $r^{2} m \notin \phi(P)$, then $r m \in P$ since P is ϕ-semiprime. So assume that $r^{2} m \in \phi(P)$. First, suppose that $r^{2} P \nsubseteq \phi(P)$. So there exists $n_{0} \in P$ such that $r^{2} n_{0} \notin \phi(P)$. Then $r^{2}\left(m+n_{0}\right) \in$ $P \backslash \phi(P)$. Thus $r\left(m+n_{0}\right) \in P$ and so $r m \in P$. Hence we can assume that $r^{2} P \subseteq \phi(P)$.

Next, suppose that $\left(r+r_{0}\right)^{2} m \notin \phi(P)$ for some $r_{0} \in(P: M)$. Therefore, $\left(r+r_{0}\right)^{2} m \in P \backslash \phi(P)$ and so $\left(r+r_{0}\right) m \in P$. Hence $r m \in P$. So we can assume that $(r+(P: M))^{2} m \subseteq \phi(P)$. Since $(r+(P: M))^{2} P \nsubseteq \phi(P)$ there exists $k \in(P: M)$ and $n \in P$ with $(r+k)^{2} n \notin \phi(P)$. Then $(r+k)^{2}(n+m) \in P \backslash \phi(P)$. So $(r+k)(n+m) \in P$. Hence $r m \in P$. Therefore P is a semiprime submodule of M.

Theorem 2.2. Let R be a commutative ring with characteristic 2 and M be an R-module. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function and P be a ϕ-semiprime submodule of M. If $r_{0}^{2} P \nsubseteq \phi(P)$ for some $r_{0} \in(P: M)$, then P is a semiprime submodule of M.

Proof. Let $r^{2} m \in P$, where $r \in R$ and $m \in M$. Similar to the proof of Theorem 2.1, we can assume that $r^{2} P \subseteq \phi(P)$. If $r^{2} m \notin \phi(P)$, then $r^{2} m \in P \backslash \phi(P)$ and so $r m \in P$. Because P is ϕ-semiprime.

Next, suppose that $r_{0}^{2} m \notin \phi(P)$. Therefore, $\left(r+r_{0}\right)^{2} m=\left(r^{2}+r_{0}^{2}\right) m \in$ $P \backslash \phi(P)$ and so $\left(r+r_{0}\right) m \in P$. Hence $r m \in P$. So we can assume that $r_{0}^{2} m \in \phi(P)$. Since $r_{0}^{2} P \nsubseteq \phi(P)$, there exists $n \in P$ with $r_{0}^{2} n \notin \phi(P)$. Then $\left(r+r_{0}\right)^{2}(m+n)=\left(r^{2}+r_{0}^{2}\right)(m+n) \in p \backslash \phi(P)$. Hence $\left(r+r_{0}\right)(m+n) \in P$ and so $r m \in P$. Therefore, P is a semiprime submodule of M.

Corollary 2.3. Let R be a commutative ring and M be an R-module. Let P be a weakly semiprime submodule of M which is not semiprime. Then $r^{2} P=(0)$ for some $r \in R \backslash(P: M)$.

Proof. In Theorem 2.1, set $\phi=\phi_{0}$.
Corollary 2.4. Let R be a commutative ring with characteristic 2 and M be an R-module. Let P be a weakly semiprime submodule of M that is not semiprime. Then $r^{2} P=(0)$ for all $r \in(P: M)$.

Proof. In Theorem 2.2, set $\phi=\phi_{0}$.
In Theorem 2.5, we give several characterizations of ϕ-semiprime submodules.

Theorem 2.5. Let R be a commutative ring, M be an R-module, P be a proper submodule of M and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. Then the following statements are equivalent:

1) P is a ϕ-semiprime submodule of M.
2) $\left(P:_{M}\left(r^{2}\right)\right)=\left(\phi(P):_{M}\left(r^{2}\right)\right) \cup\left(P:_{M}(r)\right)$ for all $r \in R$.
3) $\left(P:_{M}\left(r^{2}\right)\right)=\left(\phi(P):_{M}\left(r^{2}\right)\right)$ or $\left(P:_{M}\left(r^{2}\right)\right)=\left(P:_{M}(r)\right)$ for all $r \in R$.

Proof. (1) $\Rightarrow(2)$ Let $x \in\left(P:_{M}\left(r^{2}\right)\right)$. Then $r^{2} x \in P$. If $r^{2} x \notin \phi(P)$, then $r x \in P$, because P is ϕ-semiprime and so $x \in\left(P:_{M}(r)\right)$. Now, let $r^{2} x \in \phi(P)$. Then $x \in\left(\phi(P):_{M}\left(r^{2}\right)\right)$. Hence $\left(P:_{M}\left(r^{2}\right)\right) \subseteq\left(\phi(P):_{M}\left(r^{2}\right)\right) \cup\left(P:_{M}(r)\right)$. Since $\phi(P) \subseteq P$ we have $\left(\phi(P):_{M}\left(r^{2}\right)\right) \cup\left(P:_{M}(r)\right) \subseteq\left(P:_{M}\left(r^{2}\right)\right)$. Therefore, $\left(P:_{M}\left(r^{2}\right)\right)=\left(\phi(P):_{M}\left(r^{2}\right)\right) \cup\left(P:_{M}(r)\right)$.
$(2) \Rightarrow(3)$ It is straightforward.
(3) \Rightarrow (1) Let $r^{2} x \in P \backslash \phi(P)$, where $r \in R$ and $x \in M$. Hence $x \in\left(P:_{M}\right.$ $\left.\left(r^{2}\right)\right)$ and $x \notin\left(\phi(P):_{M}\left(r^{2}\right)\right)$. So $x \in\left(P:_{M}(r)\right)$, by assumption. Thus $r x \in P$ and P is ϕ-semiprime.

Theorem 2.6. Let R be a commutative ring, M be an R-module, P be a proper submodule of M and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. If P is a ϕ-semiprime submodule of M, then $\sqrt{(P: x)}=\sqrt{(\phi(P): x)}$ or $\sqrt{(P: x)}=$ ($p: x)$ for all $x \in M \backslash P$.

Proof. Let $x \in M \backslash P$ and $a \in \sqrt{(P: x)} \backslash \sqrt{(\phi(P): x)}$. Thus $a^{s} x \in P \backslash \phi(P)$ for some $s \in \mathbf{N}$. Hence $a \in(P: x)$. Because P is a ϕ-semiprime submodule
of M. So $\sqrt{(P: x)} \subseteq \sqrt{(\phi(P): x)} \cup(P: x)$. Since $\phi(P) \subseteq P$ we have $\sqrt{(\phi(P): x)} \cup(P: x) \subseteq \sqrt{(P: x)}$ and so $\sqrt{(P: x)}=\sqrt{(\phi(P): x)} \cup(P: x)$. Therefore, $\sqrt{(P: x)}=\sqrt{(\phi(P): x)}$ or $\sqrt{(P: x)}=(p: x)$.

2.2. m-almost semiprime submodules

Corollary 2.7. Let R be a commutative ring, M be an R-module and P be a proper submodule of M. Then P is an m-almost semiprime submodule of M if and only if for any submodule N of M and $a \in R$ with $\left(a^{2}\right) N \subseteq P$ and $\left(a^{2}\right) N \nsubseteq(P: M)^{m-1} P$, one has $(a) N \subseteq P$.

Theorem 2.8. Let R be a commutative ring, M be an R-module and $0 \neq R x$ be a proper submodule of M such that $(0: x)=0$ and $\sqrt{(R x: M)}=(R x: M)$. If $R x$ is not a semiprime submodule of M, then $R x$ is not an m-almost semiprime submodule of $M,(m \geq 2)$.

Proof. Since $R x$ is not a semiprime submodule of M, there exist $a \in R$ and $y \in$ M such that $a^{2} y \in R x$ and $a y \notin R x$. If $a^{2} y \notin(R x: M)^{m-1} x$, then $R x$ is not m almost semiprime, by definition. So we can assume that $a^{2} y \in(R x: M)^{m-1} x$. We have $a(x+y) \notin R x$ and $a^{2}(x+y) \in R x$. If $a^{2}(x+y) \notin(R x: M)^{m-1} x$, then again $R x$ is not m-almost semiprime. So let $a^{2}(x+y) \in(R x: M)^{m-1} x$. Then $a^{2} x \in(R x: M)^{m-1} x$. Which gives that $a^{2} x=r x$ for some $r \in(R x:$ $M)^{m-1}$. Then $(0: x)=0$ gives that $a^{2}=r \in(R x: M)^{m-1} \subseteq(R x: M)$. So $a \in \sqrt{(R x: M)}=(R x: M)$. Thus $a y \in R x$, which is a contradiction.

Corollary 2.9. Let R be a commutative ring, M be an R-module and $0 \neq R x$ be a proper submodule of M such that $(0: x)=0$ and $\sqrt{(R x: M)}=(R x: M)$. Then $R x$ is a semiprime submodule of M if and only if $R x$ is an m-almost semiprime submodule of $M,(m \geq 2)$.

Corollary 2.10. Let the assumptions be as in Corollary 2.9. Then Rx is a semiprime submodule of M if and only if $R x$ is an m-almost semiprime submodule of $M,(m \geq 2)$.

Proof. Let $R x$ be m-almost semiprime. This is clear that $R x$ is almost semiprime. Conversely, let $R x$ be almost semiprime. So $R x$ is semiprime, by Corollary 2.9. So again $R x$ is m-almost semiprime, by Corollary 2.9 .

Lemma 2.11. Let R be a commutative ring, I be an ideal of R, M be a finitely generated faithful multiplication R-module and N be a submodule of M. Then $(I N: M)=I(N: M)$.

Proof. See [16, Lemma 3.4].
Theorem 2.12. Let $m \geq 2$ be a positive integer, R be a commutative ring, M be a finitely generated faithful multiplication R-module and P be a proper submodule of M. Then the following conditions are equivalent:

1) P is an m-almost semiprime submodule of M.
2) $(P: M)$ is an m-almost semiprime ideal of R.
3) $P=Q M$ for some m-almost semiprime ideal Q of R.

Proof. (1) $\Rightarrow(2)$ Let $a, b \in R$ and $a^{2} b \in(P: M) \backslash(P: M)^{m}$. Then $\left(a^{2}\right) b M \subseteq P$ and $\left(a^{2}\right) b M \nsubseteq(P: M)^{m-1} P$, by Lemma 2.11. So $(a) b M \subseteq P$, by Corollary 2.7. Hence $a b \in(P: M)$ and $(P: M)$ is an m-almost semiprime ideal of R.
(2) \Rightarrow (1) Let $r^{2} x \in P \backslash(P: M)^{m-1} P$ where $r \in R$ and $x \in M$. Then $\left(r^{2}\right)((x): M) \subseteq\left(\left(r^{2} x\right): M\right) \subseteq(P: M)$. If $\left(r^{2}\right)((x): M) \subseteq(P: M)^{m}$, then

$$
\left(r^{2}\right)((x): M) \subseteq(P: M)^{m} \subseteq\left((P: M)^{m-1} P: M\right)
$$

So we have $\left(r^{2}\right)(x)=\left(r^{2}\right)((x): M) M \subseteq(P: M)^{m-1} P$, a contradiction. Thus $(r)((x): M) \subseteq(P: M)$, because $(P: M)$ is an m-almost semiprime ideal of R. Therefore, $(r)(x)=(r)((x): M) M \subseteq(P: M) M=P$ and so $r x \in P$. Hence P is an m-almost semiprime submodule of M.
$(2) \Leftrightarrow(3)$ We have $Q=(P: M)$, by [15, Theorem 3.1].

2.3. ϕ-semiprime submodules of some well-known modules

Let S be a multiplicatively closed subset of the commutative ring R. We know by [20, Theorem 9.11], that each submodule of $S^{-1} M$ is of the form $S^{-1} N$, for some submodule N of M. It is easy to show that if P is a weakly semiprime submodule of M with $S^{-1} M \neq S^{-1} P$, then $S^{-1} P$ is a weakly semiprime submodule of $S^{-1} M$. In Theorem 2.13, we want to generalize this fact for ϕ-semiprime submodules.

Let $N(S)=\{x \in M \mid s x \in N ; \exists s \in S\}$. It is clear that $N(S)$ is a submodule of M containing N and $S^{-1}(N(S))=S^{-1} N$. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function and define $S^{-1} \phi: S\left(S^{-1} M\right) \rightarrow S\left(S^{-1} M\right) \cup\{\emptyset\}$ by $S^{-1} \phi\left(S^{-1} N\right)=$ $S^{-1}(\phi(N(S)))$ if $\phi(N(S)) \neq \emptyset$ and $S^{-1} \phi\left(S^{-1} N\right)=\emptyset$ if $\phi(N(S))=\emptyset$ for every $N \in S(M)$. Since $\phi(N) \subseteq N$ we have $S^{-1} \phi\left(S^{-1} N\right) \subseteq S^{-1} N$.

Next, we show that if $S^{-1}(\phi(P)) \subseteq S^{-1} \phi\left(S^{-1} P\right)$, then ϕ-semiprimeness of P together with $S^{-1} P \neq S^{-1} M$ implies that $S^{-1} P$ is $S^{-1} \phi$-semiprime.

For a submodule L of M, define $\phi_{L}: S\left(\frac{M}{L}\right) \rightarrow S\left(\frac{M}{L}\right) \cup\{\emptyset\}$ by $\phi_{L}\left(\frac{N}{L}\right)=$ $\frac{\phi(N)+L}{L}$ if $\phi(N) \neq \emptyset$ and $\phi_{L}\left(\frac{N}{L}\right)=\emptyset$ if $\phi(N)=\emptyset$ for $N \in S(M)$ with $L \subseteq N$.

Theorem 2.13. Let R be a commutative ring, M be an R-module, $\phi: S(M) \rightarrow$ $S(M) \cup\{\emptyset\}$ be a function and P be a ϕ-semiprime submodule of M. Then

1) If $L \subseteq P$ is a submodule of M, then $\frac{P}{L}$ is a ϕ_{L}-semiprime submodule of $\frac{M}{L}$.
2) Suppose that S is a multiplicatively closed subset of R such that $S^{-1} P \neq$ $S^{-1} M$ and $S^{-1}(\phi(P)) \subseteq S^{-1} \phi\left(S^{-1} P\right)$. Then $S^{-1} P$ is an $S^{-1} \phi$-semiprime submodule of $S^{-1} M$.

Proof. (1) Let $a \in R$ and $\bar{x} \in \frac{M}{L}$ with $a^{2} \bar{x} \in \frac{P}{L} \backslash \phi_{L}\left(\frac{P}{L}\right)$, where $\bar{x}=x+L$, for some $x \in M$. So we have $a^{2} x \in P \backslash \phi(P)$. Thus $a x \in P$, because P is ϕ-semiprime. Therefore, $a \bar{x} \in \frac{P}{L}$ and so $\frac{P}{L}$ is a ϕ_{L}-semiprime submodule of $\frac{M}{L}$.
(2) Let $\frac{a}{s} \in S^{-1} R$ and $\frac{x}{t} \in S^{-1} M$ with $\left(\frac{a}{s}\right)^{2} \frac{x}{t} \in S^{-1} P \backslash S^{-1} \phi\left(S^{-1} P\right)$. Then $\frac{a^{2} x}{s^{2} t} \in S^{-1} P \backslash S^{-1}(\phi(P))$, by assumption. So there exists $u \in S$ such that $u a^{2} x \in P \backslash \phi(P)$ (note that $v a^{2} x \notin \phi(P)$, for each $v \in S$). Thus uax \in P. Therefore, $\frac{a}{s} \frac{x}{t} \in S^{-1} P$ and $S^{-1} P$ is an $S^{-1} \phi$-semiprime submodule of $S^{-1} M$.

In the semiprime submodules case, P is a semiprime submodule of M if and only if $\frac{P}{K}$ is a semiprime submodule of $\frac{M}{K}$ for any submodule $K \subseteq P$. But the converse part may not be true in the case of ϕ-semiprime submodules. For example, consider the ring $R=K[X, Y]$, where K is a field and $\phi=\phi_{2}$. Also, let $P=\left(X, Y^{2}\right)$ and $L=(X, Y)^{2}$. Then $\frac{P}{L}$ is an almost semiprime submodule of $\frac{R}{L}$, while P is not so in R. But we have the following theorem.

Theorem 2.14. Let R be a commutative ring, M be an R-module and ϕ : $S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. Let P and K be submodules of M such that $K \subseteq \phi(P)$. Then P is a ϕ-semiprime submodule of M if and only if $\frac{P}{L}$ is a ϕ_{L}-semiprime submodule of $\frac{M}{L}$.
Proof. \Rightarrow) This is clear, by Theorem 2.13(1).
$\Leftarrow)$ Let $\frac{P}{L}$ be a ϕ_{L}-semiprime submodule of $\frac{M}{L}$ and assume that $a^{2} x \in$ $P \backslash \phi(P)$, where $a \in R$ and $x \in M$. If $a^{2}(x+L) \in \phi_{L}\left(\frac{P}{L}\right)=\frac{\phi(P)+L}{L}=\frac{\phi(P)}{L}$, then $a^{2} x \in \phi(P)$, which is a contradiction. So we have

$$
a^{2}(x+L) \in \frac{P}{L} \backslash \phi_{L}\left(\frac{P}{L}\right) .
$$

Thus $a(x+L) \in \frac{P}{L}$, because $\frac{P}{L}$ is ϕ_{L}-semiprime. So $a x \in P$ and P is ϕ semiprime.

Proposition 2.15. Let R be a commutative ring, M be an R-module, ϕ : $S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function and P be a proper submodule of M. Then P is a ϕ-semiprime submodule of M if and only if $\frac{P}{\phi(P)}$ is a weakly semiprime submodule of $\frac{M}{\phi(P)}$.

Proof. \Rightarrow) Assume that P is a ϕ-semiprime submodule of M. Let $r \in R$ and $x+\phi(P) \in \frac{M}{\phi(P)}$ with $0 \neq r^{2}(x+\phi(P)) \in \frac{P}{\phi(P)}$. Hence $r^{2} x \in P \backslash \phi(P)$ and so $r x \in P$. Thus $r(x+\phi(P)) \in \frac{P}{\phi(P)}$. Therefore, $\frac{P}{\phi(P)}$ is a weakly semiprime submodule of $\frac{M}{\phi(P)}$.
$\Leftarrow)$ Assume that $\frac{P}{\phi(P)}$ is a weakly semiprime submodule of $\frac{M}{\phi(P)}$. Let $r^{2} x \in$ $P \backslash \phi(P)$, where $r \in R$ and $x \in M$. Then $0 \neq r^{2}(x+\phi(P)) \in \frac{P}{\phi(P)}$ and hence $r(x+\phi(P)) \in \frac{P}{\phi(P)}$. Therefore, $r x \in P$ and P is ϕ-semiprime.

Let R_{i} be a commutative ring and M_{i} be an R_{i}-module for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is of the form $N_{1} \times N_{2}$, where N_{i} is a submodule of M_{i} for $i=1,2$.

Let $P_{1} \times M_{2}$ be a weakly semiprime submodule of M and $r_{1} \in R_{1}$ and $x_{1} \in M_{1}$ with $r_{1}^{2} x_{1} \in M_{1}$. Let $0 \neq x_{2} \in M_{2}$. Then $\left(r_{1}, 1\right)^{2}\left(x_{1}, x_{2}\right) \in P_{1} \times M_{2} \backslash$ $\{(0,0)\}$. By assumption, $r_{1} x_{1} \in P_{1}$. Therefore, P_{1} is a semiprime submodule of M_{1}. If P_{1} is a weakly semiprime submodule of M_{1}, then $P_{1} \times M_{2}$ need not be a weakly semiprime submodule of M.

Next, we show that if P_{1} is a weakly semiprime submodule of M_{1}, then $P_{1} \times M_{2}$ is a ϕ-semiprime submodule of M if $\{0\} \times M_{2} \subseteq \phi\left(P_{1} \times M_{2}\right)$.

Proposition 2.16. Let R_{i} be a commutative ring and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}, M=M_{1} \times M_{2}$ and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. Suppose that P_{1} is a weakly semiprime submodule of M_{1} such that $\{0\} \times M_{2} \subseteq \phi\left(P_{1} \times M_{2}\right)$. Then $P_{1} \times M_{2}$ is a ϕ-semiprime submodule of M

Proof. We have $P_{1} \times M_{2} \backslash \phi\left(P_{1} \times M_{2}\right) \subseteq P_{1} \times M_{2} \backslash\{0\} \times M_{2}=\left(P_{1} \backslash\{0\}\right) \times M_{2}$. Let $\left(r_{1}, r_{2}\right)^{2}\left(m_{1}, m_{2}\right) \in P_{1} \times M_{2} \backslash \phi\left(P_{1} \times M_{2}\right)$, where $\left(r_{1}, r_{2}\right) \in R$ and $\left(m_{1}, m_{2}\right) \in M$. So $\left(r_{1}^{2} m_{1}, r_{2}^{2} m_{2}\right) \in P_{1} \backslash\{0\} \times M_{2}$ and by assumption on P_{1} we have $r_{1} m_{1} \in P_{1}$. This gives $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right) \in P_{1} \times M_{2}$. Therefore, $P_{1} \times M_{2}$ is a ϕ-semiprime submodule of M.

Proposition 2.17. With the same notation as in Proposition 2.16, let ϕ : $S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function such that $\phi_{\omega} \leq \phi$. Then for any weakly semiprime submodule P_{1} of $M_{1}, P_{1} \times M_{2}$ is a ϕ-semiprime submodule of $M_{1} \times$ M_{2}.

Proof. We have

$$
\{0\} \times M_{2} \subseteq\left(P_{1} \times M_{2}: M_{1} \times M_{2}\right)^{i}\left(P_{1} \times M_{2}\right)=\left[\left(P_{1}: M_{1}\right)^{i} P_{1}\right] \times M_{2}
$$

for all $i \geq 1$ and hence
$\{0\} \times M_{2} \subseteq \cap_{i=1}^{\infty}\left(P_{1} \times M_{2}: M_{1} \times M_{2}\right)^{i}\left(P_{1} \times M_{2}\right)=\phi_{\omega}\left(P_{1} \times M_{2}\right) \subseteq \phi\left(P_{1} \times M_{2}\right)$.
So the result follows by Proposition 2.16.
Proposition 2.18. Let $R=R_{1} \times \cdots \times R_{n}$ be a ring and $M=M_{1} \times \cdots \times M_{n}$ be an R-module, where R_{i} is a commutative ring and M_{i} is an R_{i}-module, for $i=1, \ldots, n$. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function, $P=P_{1} \times \cdots \times P_{n}$ be a ϕ-semiprime submodule of M, where P_{i} is a submodule of M_{i} and let $\psi_{i}: S\left(M_{i}\right) \rightarrow S\left(M_{i}\right) \cup\{\emptyset\}$ be a function and $\phi(P)=\psi_{1}\left(P_{1}\right) \times \cdots \times \psi_{n}\left(P_{n}\right)$. Then P_{j} is a ψ_{j}-semiprime submodule of M_{j} for each j with $P_{j} \neq M_{j},(n \geq 2)$.

Proof. Let $P_{j} \neq M_{j}, x_{j} \in M_{j}$ and $r_{j} \in R_{j}$ such that $r_{j}^{2} x_{j} \in P_{j} \backslash \psi_{j}\left(P_{j}\right)$. Thus $\left(0, \ldots, 0, r_{j}, 0, \ldots, 0\right)^{2}\left(0, \ldots, 0, x_{j}, 0, \ldots, 0\right) \in P \backslash \phi(P)$. Therefore,

$$
\left(0, \ldots, 0, r_{j}, 0, \ldots, 0\right)\left(0, \ldots, 0, x_{j}, 0, \ldots, 0\right) \in P
$$

Because P is ϕ-semiprime. So $r_{j} x_{j} \in P_{j}$. Hence P_{j} is a ψ_{j}-semiprime submodule of M_{j}.

Corollary 2.19. Let $R=R_{1} \times \cdots \times R_{n}$ be a ring, $M=M_{1} \times \cdots \times M_{n}$ be an R-module and $P=P_{1} \times \cdots \times P_{n}$, where R_{i} is a commutative ring, M_{i} is an R_{i}-module and P_{i} is a submodule of M_{i} for $i=1, \ldots, n$. Let P be an m-almost semiprime submodule of M. Then P_{j} is an m-almost semiprime submodule of M_{j} for each j with $P_{j} \neq M_{j},(n, m \geq 2)$.

Proof. We have $\phi_{m}(P)=(P: M)^{m-1} P=\left(P_{1}: M_{1}\right)^{m-1} P_{1} \times \cdots \times\left(P_{n}:\right.$ $\left.M_{n}\right)^{m-1} P_{n}=\phi_{m}\left(P_{1}\right) \times \cdots \times \phi_{m}\left(P_{n}\right)$. So the result follows by Proposition 2.18.

2.4. Weakly semiprime submodules and flat modules

A flat module over a commutative ring R is an R-module M such that taking the tensor product over R with M preserves exact sequences.

Let R be a commutative ring, M be an R-module, N be a submodule of M and $r \in R$. It is easy to show that $\left(N:_{M} r\right)=\{m \in M \mid r m \in N\}$ is a submodule of M containing N. In the following lemma we have a characterization of ϕ-semiprime submodules.

Lemma 2.20. Let R be a commutative ring, M be an R-module and ϕ : $S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. Let P be a proper submodule of M. Then P is a ϕ-semiprime submodule of M if and only if $\left(P: r^{2}\right)=\left(\phi(P): r^{2}\right)$ or $\left(P: r^{2}\right)=(P: r)$ for every $r \in R$.
Proof. This is clear, by Theorem 2.5.
Lemma 2.21. Let R be a commutative ring, M be an R-module, P be a submodule of M and $r \in R$. Then for every flat R-module F we have $F \otimes(P$: $r)=(F \otimes P: r)$.

Proof. See, [5, Lemma 3.2].
Theorem 2.22. Let R be a commutative ring and M be an R-module.

1) If F is a flat R-module and P is a weakly semiprime submodule of M such that $F \otimes P \neq F \otimes M$, then $F \otimes P$ is a weakly semiprime submodule of $F \otimes M$.
2) Let F be a faithfully flat R-module. Then P is a weakly semiprime submodule of M if and only if $F \otimes P$ is a weakly semiprime submodule of $F \otimes M$.
Proof. (1) Let $r \in R$. We have $\left(P: r^{2}\right)=\left(0: r^{2}\right)$ or $\left(P: r^{2}\right)=(P: r)$, by Lemma 2.20. Therefore, $\left(F \otimes P: r^{2}\right)=F \otimes\left(P: r^{2}\right)=F \otimes\left(0: r^{2}\right)=\left(0: r^{2}\right)$ or $\left(F \otimes P: r^{2}\right)=F \otimes\left(P: r^{2}\right)=F \otimes(P: r)=(F \otimes P: r)$, by Lemma 2.21. Hence $F \otimes P$ is a weakly semiprime submodule of $F \otimes M$, by Lemma 2.20.
(2) Let P be a weakly semiprime submodule of M and $F \otimes P=F \otimes M$. Therefore $0 \rightarrow F \otimes P \rightarrow F \otimes M \rightarrow 0$ is an exact sequence and since F is a faithfully flat R-module we have $0 \rightarrow P \rightarrow M \rightarrow 0$ is an exact sequence. Hence $P=M$, which is a contradiction. So $F \otimes P \neq F \otimes M$. Now, $F \otimes P$ is a weakly semiprime submodule of $F \otimes M$, by part (1).

Conversely, suppose that $F \otimes P$ is a weakly semiprime submodule of $F \otimes M$. We have $F \otimes P \neq F \otimes M$ and obviously $P \neq M$. Let $r \in R$. We have $\left(F \otimes P: r^{2}\right)=\left(0: r^{2}\right)$ or $\left(F \otimes P: r^{2}\right)=(F \otimes P: r)$, by Lemma 2.20. Then $F \otimes\left(P: r^{2}\right)=F \otimes\left(0: r^{2}\right)$ or $F \otimes\left(P: r^{2}\right)=F \otimes(P: r)$, by Lemma 2.21.

So $0 \rightarrow F \otimes\left(P: r^{2}\right) \rightarrow F \otimes\left(0: r^{2}\right) \rightarrow 0$ or $0 \rightarrow F \otimes\left(P: r^{2}\right) \rightarrow$ $F \otimes(P: r) \rightarrow 0$ is an exact sequence. Thus $0 \rightarrow\left(P: r^{2}\right) \rightarrow\left(0: r^{2}\right) \rightarrow 0$ or $0 \rightarrow\left(P: r^{2}\right) \rightarrow(P: r) \rightarrow 0$ is an exact sequence, because F is faithfully flat. Hence $\left(P: r^{2}\right)=\left(0: r^{2}\right)$ or $\left(P: r^{2}\right)=(P: r)$. So P is a weakly semiprime submodule of M, by Lemma 2.20.

References

[1] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003 (2003), no. 27, 1715-1724.
[2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1676.
[3] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696.
[4] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
[5] A. Azizi, Weakly prime submodules and prime submodules, Glasg. Math. J. 48 (2006), no. 2, 343-346.
[6] A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), no. 2, 441-452.
[7] M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8 (2009), no. 3, 351-362.
[8] M. Behboodi and S. H. Shojaee, On chains of classical prime submodules and dimension theory of modules, Bull. Iranian Math. Soc. 36 (2010), no. 1, 149-166.
[9] S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (2005), no. 3, 423-429.
[10] , On weakly prime submodules, Tamkang J. Math. 38 (2007), no. 3, 247-252.
[11] M. Ebrahimpour, On generalizations of prime ideals (II), Comm. Algebra 42 (2014), no. 9, 3861-3875.
[12] , On generalisations of almost prime and weakly prime ideals, Bull. Iranian Math. Soc. 40 (2014), no. 2, 531-540.
[13] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268-1279.
[14] , On generalizations of prime submodules, Bull. Iranian Math. Soc. 39 (2013), no. 5, 919-939.
[15] Z. A. El-bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779.
[16] H. A. Khashan, On almost prime submodules, Acta Math. Sci. B 32 (2012), no. 2, 645-651.
[17] C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1984), no. 1, 61-69.
[18] R. Nekooei, Weakly prime submodules, Far East J. Math. Sci. 39 (2010), no. 2, 185-192.
[19] B. Saraç, On semiprime submodules, Commun. Algebra 37 (2009), no. 7, 2485-2495.
[20] R. Sharp, Steps In Commutative Algebra, Cambridge University Press, 191-211, Cambridge-New York-Sydney, 2000.
[21] A. Yousefian Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 88 (2013), no. 1, 83-91.
[22] A. Yousefian Darini and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011), no. 3, 577-584.

Mahdieh Ebrahimpour
Department of Mathematics
Vali-e-Asr University
Rafsanjan 518, Iran
E-mail address: m.ebrahimpour@vru.ac.ir
Fatemeh Mirzaee
Department of pure Mathematics
Shahid Bahonar University
Kerman 76169133, Iran
E-mail address: mirzaee0269@yahoo.com

[^0]: Received February 2, 2016; Revised July 11, 2016.
 2010 Mathematics Subject Classification. Primary 13C05, Secondary 13C13.
 Key words and phrases. semiprime submodules, ϕ-semiprime submodules, weakly semiprime submodules, m-almost semiprime submodules, flat modules.

