SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES

SANG CHEOL LEE AND REZVAN VARMAZYAR

ABSTRACT. Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever $I^nK\subseteq Q$, where $I\subseteq h(R)$, n is a positive integer, and $K\subseteq h(M)$, then $IK\subseteq Q$. We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if $\operatorname{grad}(Q)\cap h(M)=Q\cap h(M)$. Furthermore if M is finitely generated, then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if

```
\begin{split} &(grad(Q)\cap h(M))\backslash (grad(0_M)\cap h(M))\\ &=(Q\cap h(M))\backslash (grad(0_M)\cap Q\cap h(M)). \end{split}
```

Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that $Q+K\neq M$ and $Q\cap K\subseteq M_g$ for all $g\in G$, then we prove that Q+K is almost semiprime in M.

1. Introduction

Let G be a group. Then we define a G-graded ring R and a G-graded module over R in the same way as in [2], [3], and [5]. The notations which the authors use are slightly different but basically the same.

Throughout this paper G is a group, R is a G-graded commutative ring with identity and M is a G-graded module over R. From now on, by graded we mean G-graded, unless otherwise indicated.

Lemma 1.1. Let R be a graded ring.

- (i) If \mathfrak{a} and \mathfrak{b} are graded ideals of R, then $\mathfrak{a} + \mathfrak{b}$, $\mathfrak{a} \cap \mathfrak{b}$, and \mathfrak{ab} are graded ideals of R.
- (ii) If a is an element of h(R), then the cyclic ideal aR of R is graded.

Received April 27, 2011; Revised June 21, 2011.

 $^{2010\} Mathematics\ Subject\ Classification.\ 13C13,\ 13A02,\ 16W50.$

 $Key\ words\ and\ phrases.$ graded multiplication module, semiprime submodule, almost semiprime.

Let $M = \bigoplus_{g \in G} M_g$ be a graded R-module. Let N be a submodule of M. The factor R-module M/N becomes a G-graded module over R with g-component $(M/N)_g = (M_g + N)/N$ for $g \in G$. A submodule N of M is called to be graded if $N = \bigoplus_{g \in G} N_g$ where $N_g = N \cap M_g$ for $g \in G$. Clearly, 0 is a graded submodule of M.

If N and K are submodules of an R-module M, the set of all elements $r \in R$ satisfying $rK \subseteq N$ becomes an ideal of R and is denoted by $(N :_R K)$ as usual.

Lemma 1.2. Let R be a graded ring and M be a graded R-module.

- (i) If N and K are graded submodules of M, then N+K and $N\cap K$ are graded submodules of M.
- (ii) If a is an element of h(R) and x is an element of h(M), then aM and Rx are graded submodules of M.
- (iii) If N is a graded submodule of M and K is a graded submodule of M, then $(N :_R K)$ is a graded ideal of R.

Proof. Clearly, (i) holds. See [3, Lemma 2.2] for (ii). For the proof of (iii), see [2, Lemma 2.1] and [5, Lemma 1(ii)]. We give a proof of (iii) for our record.

To show that $(N:_R K)$ is a graded ideal of R, let $I=(N:_R K)$. We show $I=\oplus_{g\in G}I_g$. For all $g\in G$, $I_g=I\cap R_g\subseteq I$. Hence $\oplus_{g\in G}I_g\subseteq I$. Conversely, let x be any element of I. Since R is graded, there exist $g_1,g_2,\ldots,g_n\in G$ such that $x=\sum_{j=1}^n x_{g_j}$. To show that $I\subseteq \oplus_{g\in G}I_g$, it suffices to show that $x_{g_j}\in I$ since then $x_{g_j}\in R_{g_j}\cap I=I_{g_j}$. In turn, it suffices to show that $x_{g_j}\in N$.

Since K is graded, $xK \subseteq N$, and N is graded, we have

$$x_{g_j}K = x_{g_j}(\bigoplus_{h \in G} K_h) = \bigoplus_{h \in G} x_{g_j}K_h$$

$$\subseteq \bigoplus_{h \in G} (xK)_{g_jh} \subseteq \bigoplus_{h \in G} N_{g_jh} \subseteq N,$$

as required.

Corollary 1.3. Let R be a graded ring. If \mathfrak{a} and \mathfrak{b} are graded ideals of R, then $(\mathfrak{a}:_R \mathfrak{b})$ is a graded ideal of R.

Let R be a graded ring and M be a graded R-module. We recall that a proper graded submodule P of M is prime if whenever $rm \in P$, where $r \in h(R)$ and $m \in h(M)$, then either $r \in (P :_R M)$ or $m \in P$.

Definition 1.4. Let R be a graded ring and M be a graded R-module. A proper graded submodule Q of M is *semiprime* if whenever $I^nK \subseteq Q$, where $I \subseteq h(R)$, n is a positive integer, and $K \subseteq h(M)$, then $IK \subseteq Q$.

Remark 1.5. It is easy to check that a proper graded ideal I of a graded ring R is semiprime if and only if whenever $x^ty \in I$, where $x, y \in h(R)$ and t is a positive integer, then $xy \in I$.

Proposition 1.6. Let R be a graded ring and M be a graded R-module. Then every graded prime submodule of M is semiprime. Moreover, every graded prime ideal of R is semiprime.

Proof. Assume that $I^nK \subseteq N$, where n is a positive integer, $I \subseteq h(R)$ and $K \subseteq h(M)$. Now, since N is a graded prime, we have either $I \subseteq (N:M) \subseteq (N:K)$ or $I^{n-1}K \subseteq N$. In the first case $IK \subseteq N$ and we are done. If $I^{n-1}K \subseteq N$, then $I \subseteq (N:M)$ or $I^{n-2}K \subseteq N$. In this way we have $IK \subseteq N$. Hence N is a graded semiprime submodule of M.

For basic properties of a multiplication module one may refer to [1], [4] and [6].

A graded R-module M is said to be a graded multiplication module if for every graded submodule N of M, there exists a graded ideal $\mathfrak a$ of R such that $N=\mathfrak a M$. Let M be a graded R-module. Assume that M is a graded multiplication module. If N and K are graded submodules of M, then there exist graded ideals $\mathfrak a$ and $\mathfrak b$ of R such that $N=\mathfrak a M$ and $K=\mathfrak b M$. Then the product of N and K is defined to be $(\mathfrak a \mathfrak b) M$ and is denoted by $N \cdot K$. It is well-known in [1, Theorem 3.4] and [5, Theorem 4] that the product is well-defined. In fact, $\mathfrak a \mathfrak b$ is a graded ideal of R by Lemma 1.1 and $N \cdot K$ is independent of the choices of $\mathfrak a$ and $\mathfrak b$. Also, for every positive integer k, N^k is defined to be

$$N \cdot N \cdot \cdots N$$
.

Let R be a graded ring and M be a graded multiplication module over R. The *graded radical* of a graded submodule N of M is the set of all elements m of M such that $(Rm)^k \subseteq N$ for some positive integer k and is denoted by grad(N).

Remark 1.7. There were several authors who would like to define the product $x \cdot y$ of two elements x and y of M to be $Rx \cdot Ry$ and then they used the notation " $x^n \subseteq N$ for some positive integer n" in their papers, such as in [1, Theorem 3.13] and in [5, Corollary 4 to Theorem 12]. If n = 1, then $x \subseteq N$. This does not make sense, because $x \in M$. Hence it is natural not to define the product of two elements of M. However, we define the product of two submodules of M as in the second paragraph just posterior to the proof of Proposition 1.6.

Let R be a graded ring and M be a graded multiplication module over R. A graded submodule N of M is called *nilpotent* if $N^t = 0$ for some positive integer t. If a graded submodule N of M is nilpotent, then grad(0) = grad(N).

A nonempty subset S of M is said to be multiplicatively closed if $(Rx)^n \cap S \neq \emptyset$ for each positive integer n and each $x \in S$.

The present paper will proceed as follows. Let R be a graded ring and M be a graded multiplication module over R.

In Section 2, we characterize graded semiprime submodules of M as follows.

- (1) (Theorem 2.1 and its corollary) The following ten statements are equivalent for a proper graded submodule P of M.
 - (i) P is semiprime.
 - (ii) If $(Rx)^n \subseteq P$, where $x \in h(M)$ and n is a positive integer, then $x \in P$.

- (iii) If $K^n \subseteq P$, where K is a graded submodule of M and n is a positive integer, then $K \subseteq P$.
- (iv) If L is a graded submodule of M such that $P \subset L \subseteq M$, then $(P :_R L)$ is a graded semiprime ideal of R.
- (v) $(P:_R M)$ is a graded semiprime ideal of R.
- (vi) grad(P) = P.
- (vii) If $Rx \cdot Ry \subseteq P$, where $x, y \in h(M)$, then $Rx \cap Ry \subseteq P$.
- (viii) The factor R-module M/P has no nonzero nilpotent submodule.
- (ix) There exits a graded semiprime ideal \mathfrak{p} of R with $(0:_R M) \subseteq \mathfrak{p}$ such that $P = \mathfrak{p}M$.
- (x) $M \setminus P$ is multiplicatively closed.

Moreover, if M is regular, then we show that every proper graded submodule of M is semiprime.

We give an example showing that the condition "M being a multiplication module" cannot be omitted.

Using the result above, we show that the three statements are true.

- (2) (Theorem 2.6) If K is a graded submodule of M and S is a multiplicatively closed subset of M such that $K \cap S = \emptyset$, then there is a graded semiprime submodule P of M which is maximal with respect to the properties that $K \subseteq P$ and $P \cap S = \emptyset$.
- (3) (Proposition 2.8) If N is a graded semiprime submodule of M, then it contains a minimal graded semiprime submodule.
- (4) (Theorem 2.9) If N is a proper graded submodule of M and M is finitely generated, then there exists a graded semiprime submodule of M that contains N.

In Section 3, we define an almost semiprime submodule of M.

(5) (Theorem 3.5) Let Q, K be graded submodules of M. If Q and K are almost semiprime in M such that $Q + K \neq M$ and $Q \cap K \subseteq M_g$ for all $g \in G$, then we prove that Q + K is almost semiprime in M.

2. Semiprime submodules

In this section, we deal with graded multiplication modules over graded rings. We define a semiprime submodule of a graded multiplication module over a graded ring to characterize it. And then we discuss several properties of semiprime submodules.

Let M be a multiplication module over a ring R. Let K be a submodule of M. Then there exists an ideal I of R such that K = IM. Consider the following descending chain of ideals of R:

$$I\supseteq I^2\supseteq\cdots$$
.

Then we can get a descending chain of submodules of M

$$K\supseteq K^2\supseteq\cdots$$
.

From this, we can see the following: if $K \subseteq N$, where N is a submodule of M, then $K^n \subseteq N$ for every positive integer n. In view of this it is natural to ask a question: when $K^n \subseteq N$, where n is a positive integer, under what conditions can we get $K \subseteq N$? The following result deals with this question.

Theorem 2.1. Let M be a graded multiplication module over R and P be a proper graded R-submodule of M. Then the following statements are equivalent.

- (i) P is semiprime.
- (ii) If $(Rx)^n \subseteq P$, where $x \in h(M)$ and n is a positive integer, then $x \in P$.
- (iii) If $K^n \subseteq P$, where K is a graded submodule of M and n is a positive integer, then $K \subseteq P$.
- (iv) If L is a graded submodule of M such that $P \subset L \subseteq M$, then $(P :_R L)$ is a graded semiprime ideal of R.
- (v) $(P:_R M)$ is a graded semiprime ideal of R.
- (vi) grad(P) = P.
- (vii) If $Rx \cdot Ry \subseteq P$, where $x, y \in h(M)$, then $Rx \cap Ry \subseteq P$.
- (viii) The factor R-module M/P has no nonzero nilpotent submodule.
- (ix) There exits a graded semiprime ideal \mathfrak{p} of R with $(0:_R M) \subseteq \mathfrak{p}$ such that $P = \mathfrak{p}M$.

Proof. (i) \Rightarrow (ii) Let P be a graded semiprime submodule of M. Assume that $(Rx)^n \subseteq P$, where $x \in h(M)$ and n is a positive integer. Since M is a multiplication module, there exists a graded ideal $\mathfrak a$ of R such that $Rx = \mathfrak a M$. Then

$$\mathfrak{a}^n M = (\mathfrak{a}M)^n = (Rx)^n \subseteq P.$$

Since P is a graded semiprime submodule of M, we have $Rx = \mathfrak{a}M \subseteq P$. Therefore $x \in P$.

- (ii) \Rightarrow (iii) Assume that $K^n \subseteq P$, where K is a graded submodule of M and n is a positive integer. To show that $K \subseteq P$, it suffices to show that every element x of h(K) belongs to P. Let x be an arbitrary element of h(K). Then $x \in h(M)$ and $(Rx)^n \subseteq K^n \subseteq P$. By (ii), $x \in P$.
- (iii) \Rightarrow (iv) Assume that (iii) is true. Assume that L is a graded submodule of M such that $P \subset L \subseteq M$. Then $(P :_R L)$ is proper. By Lemma 1.2, $(P :_R L)$ is graded.

Also, assume that $\mathfrak{a}^n\mathfrak{b}\subseteq (P:_R L)$, where n is a positive integer and \mathfrak{a} and \mathfrak{b} are graded ideals of R. Then

$$((\mathfrak{ab})L)^n = (\mathfrak{ab})^n L = \mathfrak{b}^{n-1}((\mathfrak{a}^n\mathfrak{b})L) \subseteq \mathfrak{b}^{n-1}P \subseteq P.$$

Notice that $(\mathfrak{ab})L$ is a graded submodule of M. Then by (iii) we have $(\mathfrak{ab})L\subseteq P$. This shows that $\mathfrak{ab}\subseteq (P:_RL)$. Hence $(P:_RL)$ is a semiprime ideal.

- (iv) \Rightarrow (v) Assume that (iv) is true. Taking L by M, we can see that $(P:_R M)$ is a graded semiprime ideal of R.
- $(v) \Rightarrow (vi)$ Assume that (v) is true. Clearly, $P \subseteq grad(P)$. Conversely, assume that $(Rx)^n \subseteq P$ for some positive integer n. Then we need to show

that $x \in P$. If n = 1, then $x \in P$; we are done. Assume that n > 1. Since M is a graded multiplication module, there is a graded ideal \mathfrak{a} of R such that $Rx = \mathfrak{a}M$. Then

$$\mathfrak{a}^n M = (Rx)^n \subseteq P.$$

So, $\mathfrak{a}^{n-1}\mathfrak{a} = \mathfrak{a}^n \subseteq (P:_R M)$. Since $(P:_R M)$ is graded semiprime, we get $\mathfrak{a} \subseteq (P:_R M)$. Hence

$$x \in Rx = \mathfrak{a}M \subseteq (P :_R M)M = P$$
,

as required.

(vi) \Rightarrow (vii) Assume that (vi) is true. Assume that $Rx \cdot Ry \subseteq P$, where $x, y \in h(M)$. Let m be an arbitrary element of $Rx \cap Ry$. Then $Rm \subseteq Rx$ and $Rm \subseteq Ry$. Hence

$$(Rm)^2 \subseteq (Rx) \cdot (Ry) \subseteq P$$
.

By (vi), $Rm \subseteq P$. Hence $m \in P$. This shows that $Rx \cap Ry \subseteq P$.

 $(\text{vii}) \Rightarrow (\text{viii})$ Assume that (vii) is true. Let x+P be an arbitrary nilpotent element of M/P. Then there exists a positive integer n such that $((Rx+P)^n/P)=0$ in M/P. There exists a graded ideal \mathfrak{a} of R such that $Rx=\mathfrak{a}M$. So,

$$((Rx)^n + P)/P = (\mathfrak{a}^n M + P)/P = \mathfrak{a}^n (M/P) = ((Rx + P)^n/P) = 0.$$

This implies that $(Rx)^n \subseteq P$. By (vii),

$$x \in Rx = \overbrace{Rx \cap Rx \cap \cdots \cap Rx}^{n \text{ times}} \subseteq P.$$

Hence x + P = 0 + P.

(viii) \Rightarrow (ix) Assume that (viii) is true. Since M is a graded multiplication module, there exists a graded ideal \mathfrak{p} of R such that $P = \mathfrak{p}M$. To show that \mathfrak{p} is semiprime, assume that $\mathfrak{a}^n\mathfrak{b} \subseteq \mathfrak{p}$, where \mathfrak{a} and \mathfrak{b} are graded ideals of R. Then $(\mathfrak{ab})^n \subseteq \mathfrak{p}$. So,

$$((\mathfrak{ab})M)^n = (\mathfrak{ab})^n M \subset \mathfrak{p}M = P.$$

This means that

$$(((\mathfrak{ab})M + P)/P)^n = (((\mathfrak{ab})M)^n + P)/P = \{0 + P\}.$$

By (viii), $((\mathfrak{ab})M + P)/P = \{0 + P\}$. This implies that

$$(\mathfrak{ab})M \subseteq ((\mathfrak{ab})M + P = P = \mathfrak{p}M.$$

Since M is multiplication, it follows that $\mathfrak{ab} \subseteq \mathfrak{p}$. Therefore \mathfrak{p} is semiprime.

Also, let a be an arbitrary element of $(0:_R M)$. Then $aM = 0 \subseteq \mathfrak{p}M$. Since M is multiplication, it follows that $a \in \mathfrak{p}$. Hence $(0:_R M) \subseteq \mathfrak{p}$.

(ix) \Rightarrow (i) Assume that (ix) is true. To show that P is semiprime, assume that $\mathfrak{a}^n K \subseteq P$, where \mathfrak{a} is a graded ideal of R and K is a graded submodule of M, and n is a positive integer. Since M is a graded multiplication module, there exists a graded ideal \mathfrak{b} of R such that $K = \mathfrak{b}M$. Then

$$(\mathfrak{a}^n\mathfrak{b})M = \mathfrak{a}^nK \subseteq P = \mathfrak{p}M.$$

Since $\mathfrak{p} + (0:_R M) = \mathfrak{p}$, it follows from [6, Theorem 9, p. 231] that either $\mathfrak{a}^n\mathfrak{b} \subseteq \mathfrak{p}$ or $M = (\mathfrak{p}:_R \mathfrak{a}^n\mathfrak{b})M$. If $\mathfrak{a}^n\mathfrak{b} \subseteq \mathfrak{p}$, then we have $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{p}$ since \mathfrak{p} is semiprime. Hence $\mathfrak{a}K = \mathfrak{a}(\mathfrak{b}M) = (\mathfrak{a}\mathfrak{b})M \subseteq \mathfrak{p}M = P$; we are done. Or, assume that $M = (\mathfrak{p}:_R \mathfrak{a}^n\mathfrak{b})M$. Notice that

$$\mathfrak{a}^n(\mathfrak{p}:_R\mathfrak{a}^n\mathfrak{b})\mathfrak{b}=(\mathfrak{p}:_R\mathfrak{a}^n\mathfrak{b})\mathfrak{a}^n\mathfrak{b}\subseteq\mathfrak{p}.$$

Since \mathfrak{p} is semiprime, we have $(\mathfrak{p}:_R\mathfrak{a}^n\mathfrak{b})\mathfrak{a}\mathfrak{b}\subseteq\mathfrak{p}$. Hence

$$\mathfrak{a}K = \mathfrak{a}(\mathfrak{b}M) = (\mathfrak{a}\mathfrak{b})M = ((\mathfrak{p}:_R \mathfrak{a}^n\mathfrak{b})\mathfrak{a}\mathfrak{b})M \subseteq \mathfrak{p}M = P.$$

Hence P is semiprime.

Corollary 2.2. Let R be a graded ring and M be a graded multiplication module over R. Then a proper graded submodule P of M is semiprime if and only if $M \setminus P$ is multiplicatively closed.

Proof. Let P be a graded semiprime submodule of M and let $x \in M \setminus P$. Since P is graded semiprime, it follows from Theorem 2.1 that $(Rx)^n \nsubseteq P$ for every positive integer n. Hence $(Rx)^n \cap (M \setminus P) \neq \emptyset$. This shows that $M \setminus P$ is multiplicatively closed.

Conversely, assume that $M \setminus P$ is multiplicatively closed. To show that P is semiprime, assume that $(Rx)^n \subseteq P$, where n is a positive integer and $x \in h(M)$. We need to show that $x \in P$. Suppose on the contrary that $x \notin P$. Then $x \in M \setminus P$. By our assumption, $(Rx)^n \cap (M \setminus P) \neq \emptyset$. Take $y \in (Rx)^n \cap (M \setminus P)$. Then $y \in (Rx)^n \subseteq P$. This contradiction shows that $x \in P$, as needed.

Let M be a graded multiplication module over a graded ring R. Then $N\cdot K\subseteq N\cap K$ for each pair of graded submodules N and K of M. M is said to be regular if for each pair of graded submodules N and K of M, $N\cdot K=N\cap K$.

Corollary 2.3. Let R be a graded ring and M be a regular graded multiplication module over R. Then every proper graded submodule of M is semiprime.

The condition "M being multiplication" in Theorem 2.1 cannot be omitted. The example of this is given below.

Example 2.4. First, consider the set \mathbb{Z} of all integers. Then $(\mathbb{Z}, +)$ is a group with additive identity 0 and $(\mathbb{Z}, +, \cdot)$ is a commutative ring with identity 1. Take $G = (\mathbb{Z}, +)$ and $R = (\mathbb{Z}, +, \cdot)$. Define

$$R_g = \begin{cases} \mathbb{Z} & \text{if } g = 0\\ 0 & \text{otherwise.} \end{cases}$$

Then each R_g is an additive subgroup of R and R is their internal direct sum. In fact, $1 \in R_0$ and $R_g R_h \subseteq R_{g+h}$. That is, $R = \bigoplus_{g \in G} R_g$. Hence R is a G-graded ring. In other words, the ring $(\mathbb{Z}, +, \cdot)$ of integers is a $(\mathbb{Z}, +)$ -graded ring.

Next, let M be the set $\mathbb{Z}\times\mathbb{Z}.$ Then M can be given a $\mathbb{Z}\text{-module}$ structure. Define

$$M_g = \begin{cases} \mathbb{Z} \times 0 & \text{if } g = 0\\ 0 \times \mathbb{Z} & \text{if } g = 1\\ 0 \times 0 & \text{otherwise.} \end{cases}$$

Then $M = \bigoplus_{g \in G} M_g$. Hence M is a G-graded R-module. In other words, the \mathbb{Z} -module ($\mathbb{Z} \times \mathbb{Z}$, +, \cdot) is a \mathbb{Z} -graded \mathbb{Z} -module.

Now, consider a submodule $N = 9\mathbb{Z} \times 0$ of M. Then it is a graded submodule. $(N :_R M) = 0$ and so it is a graded semiprime ideal of R. But the graded submodule N is not graded semiprime in M, since $3^2(2,0) \in N$ but $3(2,0) \notin N$.

By Theorem 2.1, we can see that the \mathbb{Z} -module $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ is not a multiplication module.

Lemma 2.5. Let R be a graded ring and M be a graded R-module. If P is a graded submodule of M and $x \in h(M)$, then both Rx and P + Rx are graded submodules of M.

Proof. This follows from Lemma 1.2.

Theorem 2.6. Let R be a graded ring and M be a graded multiplication module over R. Let K be a graded submodule of M and S be a multiplicatively closed subset of M such that $K \cap S = \emptyset$. Then there is a graded semiprime submodule P of M which is maximal with respect to the properties that $K \subseteq P$ and $P \cap S = \emptyset$.

Proof. Let Ω be the set of all graded submodules L of M such that $K \subseteq L$ and $L \cap S = \emptyset$. $K \in \Omega$, so in particular $\Omega \neq \emptyset$. By the Zorn lemma Ω has a maximal element, say P. It is enough to show that P is semiprime. To show that P is semiprime, assume that $(Rx)^n \subseteq P$, where n is a positive integer and $x \in h(M)$. Then we need to show that $x \in P$. Suppose on the contrary that $x \notin P$. Then $P \subset P + Rx$. By Lemma 2.5, P + Rx is graded. By the maximality of P, $P + Rx \notin \Omega$. Hence $(P + Rx) \cap S \neq \emptyset$. Take $y \in (P + Rx) \cap S$. Then $y \in P + Rx$ and $y \in S$. Since M is a multiplication module and $(Rx)^n \subseteq P$, we can show that

$$(P+Rx)^n \subseteq P + (Rx)^n = P.$$

Also, since S is multiplicatively closed and $y \in S$, we have $(Ry)^n \cap S \neq \emptyset$. Hence

$$\emptyset \neq (Ry)^n \cap S \subseteq (P + Rx)^n \cap S \subseteq P \cap S$$
,

contradicting the disjointness of P and S. This shows that $x \in P$. Therefore P is a graded semiprime submodule. \square

Lemma 2.7. Let R be a graded ring and M be a graded multiplication module over R. Let Ω be a nonempty family of graded submodules of M.

- (i) If each member of Ω is semiprime in M, then so is $\cap_{Q \in \Omega} Q$.
- (ii) If each member of Ω is semiprime in M, Ω is totally ordered by inclusion, and $\bigcup_{Q \in \Omega} Q \neq M$, then $\bigcup_{Q \in \Omega} Q$ is a proper graded semiprime submodule of M.

Proof. (i) Assume that each member of Ω is semiprime in M. Then by Theorem 2.1,

```
\begin{split} \operatorname{grad}(\cap_{Q \in \Omega} Q) \cap h(M) &\subseteq (\cap_{Q \in \Omega} \operatorname{grad}(Q)) \cap h(M) \\ &= \cap_{Q \in \Omega} (\operatorname{grad}(Q) \cap h(M)) \\ &= \cap_{Q \in \Omega} (Q \cap h(M)) \\ &= (\cap_{Q \in \Omega} Q) \cap h(M). \end{split}
```

It is clear that the converse inclusion holds. Hence by Theorem 2.1 again, $\cap_{Q \in \Omega} Q$ is semiprime.

(ii) Assume that Ω is totally ordered by inclusion and $\bigcup_{Q \in \Omega} Q \neq M$. Then it is clear that $\bigcup_{Q \in \Omega} Q$ is a proper graded submodule of M. Now assume that each member of Ω is semiprime in M. Then by Theorem 2.1,

```
\begin{split} \operatorname{grad}(\cup_{Q\in\Omega}Q)\cap h(M) &\subseteq (\cup_{Q\in\Omega}\operatorname{grad}(Q))\cap h(M) \\ &= \cup_{Q\in\Omega}(\operatorname{grad}(Q)\cap h(M)) \\ &= \cup_{Q\in\Omega}(Q\cap h(M)) \\ &= (\cup_{Q\in\Omega}Q)\cap h(M). \end{split}
```

It is clear that the converse inclusion holds. Hence by Theorem 2.1 again, $\bigcup_{Q \in \Omega} Q$ is semiprime.

A graded semiprime submodule P of a graded R-module M is said to be minimal if whenever $N \subseteq P$ and N is graded semiprime, then N = P.

Proposition 2.8. Let R be a graded ring and M be a graded multiplication module over R. If N is a graded semiprime submodule of M, then it contains a minimal graded semiprime submodule.

Proof. Consider the set Σ of all graded semiprime submodules P of M such that $N \supseteq P$. Since $N \in \Sigma$ we see that Σ is not empty. Also \supseteq is a partial order on Σ . Let Ω be a non-empty subset of Σ which is totally ordered by \supseteq . Therefore by Lemma 2.7(i), $\cap_{P \in \Omega} P$ is a graded semiprime submodule of M. Now the result holds by applying the Zorn lemma. \square

Theorem 2.9. Let R be a graded ring and M be a graded multiplication module over R. If N is a proper graded submodule of M and if M is finitely generated, then there exists a graded semiprime submodule of M that contains N.

Proof. Assume that N is a proper graded submodule of M and M is finitely generated. Let Σ be the collection of all proper graded submodules of M that contains N. Then $N \in \Sigma$. In particular, $\Sigma \neq \emptyset$. Order Σ by inclusion. Then Σ is partially ordered. Let Ω be any chain of Σ . Take $Q^* = \bigcup_{Q \in \Omega} Q$. Then by Lemma 2.7(ii), $Q^* \in \Sigma$. Ω has an upper bound in Σ . By the Zorn lemma, Σ has a maximal member, say P. It remains to prove that P is semiprime.

Suppose that $grad(P) \cap h(M) \neq P \cap h(M)$. Then we can take an element $x \in (grad(P) \cap h(M)) \setminus (P \cap h(M))$. Then $x \notin P$, so $P \subset P + Rx$. By

Lemma 2.7(ii) and by the maximality of P, we must have P + Rx = M. Since $x \in grad(P)$, there exists a positive integer n such that $x^n \in P$. Hence

$$M = M^n = (P + Rx)^n \subseteq P + (Rx)^n \subseteq P$$
,

so M=P. This contradiction shows that $grad(P)\cap h(M)=P\cap h(M)$. Therefore it follows from Theorem 2.1 that P is semiprime. \square

3. Almost semiprime submodules

In this section we define an almost semiprime submodule of a graded multiplication module over a graded ring and discuss the sum of two almost semiprime submodules.

Let R be a graded ring and M be a graded multiplication module over R. Let Q be a proper graded submodule of M. Then $Q \cap h(M) \subseteq grad(Q) \cap h(M)$. The following two statements are true:

$$grad(0_M) \cap h(M) \subseteq grad(Q) \cap h(M),$$

 $grad(0_M) \cap Q \cap h(M) \subseteq Q \cap h(M).$

More precisely, we can draw their lattice diagram as follows:

Then it is easy to see that

$$(Q \cap h(M)) \setminus (grad(0_M) \cap Q \cap h(M))$$

$$\subseteq (grad(Q) \cap h(M)) \setminus (grad(0_M) \cap h(M)).$$

Remark 3.1. This statement is the same as the following one but the following one is much easier for us to make sure if it is true.

$$(Q \setminus (Q \cap grad(0_M)) \cap h(M) \subseteq (grad(Q) \setminus grad(0_M)) \cap h(M).$$

Definition 3.2. Let R be a graded ring and M be a graded multiplication module over R. A proper graded submodule Q of M is said to be almost semiprime if

$$(3.1) \qquad (grad(Q) \cap h(M)) \setminus (grad(0_M) \cap h(M)) = (Q \cap h(M)) \setminus (grad(0_M) \cap Q \cap h(M)).$$

Let $g \in G$. Likewise, a proper graded submodule Q_g of the R_e -module M_g is said to be almost g-semiprime if

$$(3.2) (grad(Q_g) \cap M_g) \setminus (grad(0_{M_g}) \cap M_g) = Q_g \setminus (grad(0_{M_g}) \cap Q_g).$$

It is immediate that the zero submodule of a graded multiplication module is graded and almost semiprime.

Let R be a graded ring and M be a graded multiplication module over R. Let Q be a proper graded submodule of M. Assume that Q is semiprime. Then it follows from Theorem 2.1 that $grad(Q) \cap h(M) = Q \cap h(M)$, so that $grad(0_M) \cap h(M) = grad(0_M) \cap Q \cap h(M)$. Hence Q is almost semiprime. This shows that every semiprime submodule of M is almost semiprime. Conversely, if Q is almost semiprime and $grad(0_M) \cap h(M) = grad(0_M) \cap Q \cap h(M)$, then Q is semiprime.

Proposition 3.3. Let R be a graded ring, M be a graded multiplication module over R and Q be a proper graded submodule of M. If Q is almost semiprime, then for every $g \in G$, Q_g is almost g-semiprime in M_g .

Proof. Assume that Q is almost semiprime. Then the equality (3.1) holds. Let $g \in G$. Note that $Q = \bigoplus_{g \in G} Q_g$. Then taking the intersection of the equation (3.1) with M_g , we can get (3.2). Hence Q_g is almost semiprime.

Lemma 3.4. Let R be a graded ring, M a graded multiplication module over R and K, Q graded submodules of M such that $K \subseteq Q$. Then the following statements are true.

- (i) If Q is almost semiprime such that $K \subseteq M_g$ for all $g \in G$, then Q/K is almost semiprime in M/K.
- (ii) If K and Q/K are almost semiprime in M and M/K, respectively, then Q is almost semiprime in M.

Proof. If $K \subseteq Q$, then we have already known that M/K and Q/K are G-graded.

(i) Assume that Q is almost semiprime such that $K\subseteq M_g$ for all $g\in G$. Then $K\subseteq \cup_{g\in G}M_g=h(M)$ and

$$h(M/K) = \bigcup_{g \in G} ((M_g + K)/K) = \bigcup_{g \in G} (M_g/K) = h(M)/K.$$

Now since the equality (3.1) holds, direct computation gives

$$(3.3) \qquad (grad(Q/K) \cap h(M/K)) \backslash (grad(0_{M/K}) \cap h(M/K)) \\ = (Q/K \cap h(M/K)) \backslash (grad(0_{M/K}) \cap Q/K \cap h(M/K)).$$

Hence Q/K is almost semiprime.

(ii) In order to show that Q is almost semiprime, we show that (3.1) holds. Let x belong up in the equality (3.1). Then $(Rx)^s \subseteq Q$ for some positive integer s. This implies that $(R(x+K))^s = ((Rx)^s + K)/K$ is in Q/K. Hence $x + K \in grad(Q/K)$. Now, there are two cases to consider.

Case 1. Assume that x + K is in $grad(0_{M/K})$. Then there exists a positive integer t such that $(R(x + K))^t = 0$ in M/K. So, $(Rx)^t \subseteq K$. This implies that $x \in grad(K)$. Since K is almost semiprime, we have

$$x \in (grad(K) \cap h(M)) \setminus (grad(0_M) \cap h(M))$$
$$= (K \cap h(M)) \setminus (grad(0_M) \cap K \cap h(M)).$$

Hence since $K \subseteq Q$, x belongs down in the equality (3.1).

Case 2. Assume that x+K is not in $grad(0_{M/K})$. Then x+K belongs up in the equality (3.3). Since Q/K is almost semiprime, the equality (3.3) holds. Hence x+K belongs down in the equality (3.3). This implies that $x+K\in Q/K$. Then there exists an element $y\in Q$ such that x+K=y+K. This implies that $x-y\in K$, so that $x=(x-y)+y\in K+Q=Q$ since $K\subseteq Q$. Hence x belongs down in the equality (3.1). This shows that the equality (3.1) holds. Therefore Q is almost semiprime.

Theorem 3.5. Let R be a graded ring, M be a graded multiplication module over R and K, Q be graded submodules of M. If K and Q are almost semiprime in M such that $Q + K \neq M$ and $Q \cap K \subseteq M_g$ for all $g \in G$, then Q + K is almost semiprime in M.

Proof. Assume that Q and K are almost semiprime in M such that $Q+K \neq M$ and $Q \cap K \subseteq M_g$ for all $g \in G$. Then Lemma 3.4(i), $Q/(Q \cap K)$ is also almost semiprime in $M/(Q \cap K)$. Notice that $Q/(Q \cap K) \cong (Q+K)/K$ by the second isomorphism theorem for modules. Then (Q+K)/K is almost semiprime in M/K. Hence by Lemma 3.4(ii), Q+K is almost semiprime.

Acknowledgements. The authors would like to appreciate the referees for giving us the several corrections.

References

- R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003 (2003), no. 27, 1715–1724.
- [2] S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33 (2006), no. 1, 3-7.
- [3] S. E. Atani and F. Farzalipour, On graded secondary modules, Turkish J. Math. 31 (2007), no. 4, 371–378.
- [4] A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178.
- [5] K. H. Oral, U. Tekir, and A. G. Ağargün, On graded prime and primary submodules, Turk J. Math. 35 (2011), 159–167.
- [6] P. F. Smith, Some remarks on multiplication module, Arch. Math. (Basel) 50 (1988), no. 3, 223–235.

SANG CHEOL LEE
DEPARTMENT OF MATHEMATICS EDUCATION
CHONBUK NATIONAL UNIVERSITY
JEONJU 561-756, KOREA
AND
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF COLORADO AT BOULDER
395 UCB
BOULDER, COLORADO 80309-0395, USA

E-mail address: scl@jbnu.ac.kr, Sang.C.Lee@Colorado.EDU

REZVAN VARMAZYAR
DEPARTMENT OF MATHEMATICS
ISLAMIC AZAD UNIVERSITY, KHOY BRANCH
KHOY 58168-44799, IRAN
E-mail address: varmazya@iaukhoy.ac.ir