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SEMIPRIME SUBMODULES OF

GRADED MULTIPLICATION MODULES

Sang Cheol Lee and Rezvan Varmazyar

Abstract. Let G be a group. Let R be a G-graded commutative ring
with identity and M be a G-graded multiplication module over R. A
proper graded submodule Q of M is semiprime if whenever InK ⊆ Q,

where I ⊆ h(R), n is a positive integer, and K ⊆ h(M), then IK ⊆ Q.
We characterize semiprime submodules of M . For example, we show
that a proper graded submodule Q of M is semiprime if and only if

grad(Q) ∩ h(M) = Q ∩ h(M). Furthermore if M is finitely generated,
then we prove that every proper graded submodule of M is contained in
a graded semiprime submodule of M . A proper graded submodule Q of
M is said to be almost semiprime if

(grad(Q) ∩ h(M))\(grad(0M ) ∩ h(M))

= (Q ∩ h(M))\(grad(0M ) ∩Q ∩ h(M)).

Let K, Q be graded submodules of M . If K and Q are almost semiprime
in M such that Q + K ̸= M and Q ∩ K ⊆ Mg for all g ∈ G, then we
prove that Q+K is almost semiprime in M .

1. Introduction

Let G be a group. Then we define a G-graded ring R and a G-graded module
over R in the same way as in [2], [3], and [5]. The notations which the authors
use are slightly different but basically the same.

Throughout this paper G is a group, R is a G-graded commutative ring with
identity and M is a G-graded module over R. From now on, by graded we mean
G-graded, unless otherwise indicated.

Lemma 1.1. Let R be a graded ring.

(i) If a and b are graded ideals of R, then a+ b, a ∩ b, and ab are graded
ideals of R.

(ii) If a is an element of h(R), then the cyclic ideal aR of R is graded.
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Let M = ⊕g∈GMg be a graded R-module. Let N be a submodule of M . The
factor R-module M/N becomes a G-graded module over R with g-component
(M/N)g = (Mg + N)/N for g ∈ G. A submodule N of M is called to be
graded if N = ⊕g∈GNg where Ng = N ∩Mg for g ∈ G. Clearly, 0 is a graded
submodule of M .

If N and K are submodules of an R-module M , the set of all elements r ∈ R
satisfying rK ⊆ N becomes an ideal of R and is denoted by (N :R K) as usual.

Lemma 1.2. Let R be a graded ring and M be a graded R-module.

(i) If N and K are graded submodules of M , then N +K and N ∩K are
graded submodules of M .

(ii) If a is an element of h(R) and x is an element of h(M), then aM and
Rx are graded submodules of M .

(iii) If N is a graded submodule of M and K is a graded submodule of M ,
then (N :R K) is a graded ideal of R.

Proof. Clearly, (i) holds. See [3, Lemma 2.2] for (ii). For the proof of (iii), see
[2, Lemma 2.1] and [5, Lemma 1(ii)]. We give a proof of (iii) for our record.

To show that (N :R K) is a graded ideal of R, let I = (N :R K). We show
I = ⊕g∈GIg. For all g ∈ G, Ig = I ∩ Rg ⊆ I. Hence ⊕g∈GIg ⊆ I. Conversely,
let x be any element of I. Since R is graded, there exist g1, g2, . . . , gn ∈ G such
that x =

∑n
j=1 xgj . To show that I ⊆ ⊕g∈GIg, it suffices to show that xgj ∈ I

since then xgj ∈ Rgj ∩ I = Igj . In turn, it suffices to show that xgjK ⊆ N .
Since K is graded, xK ⊆ N , and N is graded, we have

xgjK = xgj (⊕h∈GKh) = ⊕h∈GxgjKh

⊆ ⊕h∈G(xK)gjh ⊆ ⊕h∈GNgjh ⊆ N,

as required. □

Corollary 1.3. Let R be a graded ring. If a and b are graded ideals of R, then
(a :R b) is a graded ideal of R.

Let R be a graded ring andM be a graded R-module. We recall that a proper
graded submodule P of M is prime if whenever rm ∈ P , where r ∈ h(R) and
m ∈ h(M), then either r ∈ (P :R M) or m ∈ P .

Definition 1.4. Let R be a graded ring and M be a graded R-module. A
proper graded submodule Q of M is semiprime if whenever InK ⊆ Q, where
I ⊆ h(R), n is a positive integer, and K ⊆ h(M), then IK ⊆ Q.

Remark 1.5. It is easy to check that a proper graded ideal I of a graded ring
R is semiprime if and only if whenever xty ∈ I, where x, y ∈ h(R) and t is a
positive integer, then xy ∈ I.

Proposition 1.6. Let R be a graded ring and M be a graded R-module. Then
every graded prime submodule of M is semiprime. Moreover, every graded
prime ideal of R is semiprime.
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Proof. Assume that InK ⊆ N , where n is a positive integer, I ⊆ h(R) and K ⊆
h(M). Now, since N is a graded prime, we have either I ⊆ (N : M) ⊆ (N : K)
or In−1K ⊆ N . In the first case IK ⊆ N and we are done. If In−1K ⊆ N ,
then I ⊆ (N : M) or In−2K ⊆ N . In this way we have IK ⊆ N . Hence N is
a graded semiprime submodule of M . □

For basic properties of a multiplication module one may refer to [1], [4] and
[6].

A graded R-module M is said to be a graded multiplication module if for
every graded submodule N of M , there exists a graded ideal a of R such
that N = aM . Let M be a graded R-module. Assume that M is a graded
multiplication module. If N and K are graded submodules of M , then there
exist graded ideals a and b of R such that N = aM and K = bM . Then the
product of N and K is defined to be (ab)M and is denoted by N ·K. It is well-
known in [1, Theorem 3.4] and [5, Theorem 4] that the product is well-defined.
In fact, ab is a graded ideal of R by Lemma 1.1 and N ·K is independent of
the choices of a and b. Also, for every positive integer k, Nk is defined to be

k times︷ ︸︸ ︷
N ·N · · · · ·N .

Let R be a graded ring and M be a graded multiplication module over R.
The graded radical of a graded submodule N of M is the set of all elements
m of M such that (Rm)k ⊆ N for some positive integer k and is denoted by
grad(N).

Remark 1.7. There were several authors who would like to define the product
x·y of two elements x and y of M to be Rx·Ry and then they used the notation
“xn ⊆ N for some positive integer n” in their papers, such as in [1, Theorem
3.13] and in [5, Corollary 4 to Theorem 12]. If n = 1, then x ⊆ N . This does
not make sense, because x ∈ M . Hence it is natural not to define the product
of two elements of M . However, we define the product of two submodules of
M as in the second paragraph just posterior to the proof of Proposition 1.6.

Let R be a graded ring and M be a graded multiplication module over R.
A graded submodule N of M is called nilpotent if N t = 0 for some positive
integer t. If a graded submodule N of M is nilpotent, then grad(0) = grad(N).

A nonempty subset S of M is said to be multiplicatively closed if (Rx)n∩S ̸=
∅ for each positive integer n and each x ∈ S.

The present paper will proceed as follows. Let R be a graded ring and M
be a graded multiplication module over R.

In Section 2, we characterize graded semiprime submodules of M as follows.
(1) (Theorem 2.1 and its corollary) The following ten statements are equiv-

alent for a proper graded submodule P of M .

(i) P is semiprime.
(ii) If (Rx)n ⊆ P , where x ∈ h(M) and n is a positive integer, then x ∈ P .
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(iii) If Kn ⊆ P , where K is a graded submodule of M and n is a positive
integer, then K ⊆ P .

(iv) If L is a graded submodule of M such that P ⊂ L ⊆ M , then (P :R L)
is a graded semiprime ideal of R.

(v) (P :R M) is a graded semiprime ideal of R.
(vi) grad(P ) = P .
(vii) If Rx ·Ry ⊆ P , where x, y ∈ h(M), then Rx ∩Ry ⊆ P .
(viii) The factor R-module M/P has no nonzero nilpotent submodule.
(ix) There exits a graded semiprime ideal p of R with (0 :R M) ⊆ p such

that P = pM .
(x) M \ P is multiplicatively closed.

Moreover, if M is regular, then we show that every proper graded submodule
of M is semiprime.

We give an example showing that the condition “M being a multiplication
module” cannot be omitted.

Using the result above, we show that the three statements are true.
(2) (Theorem 2.6) If K is a graded submodule of M and S is a multiplica-

tively closed subset of M such that K∩S = ∅, then there is a graded semiprime
submodule P of M which is maximal with respect to the properties that K ⊆ P
and P ∩ S = ∅.

(3) (Proposition 2.8) If N is a graded semiprime submodule of M , then it
contains a minimal graded semiprime submodule.

(4) (Theorem 2.9) If N is a proper graded submodule of M and M is finitely
generated, then there exists a graded semiprime submodule of M that contains
N .

In Section 3, we define an almost semiprime submodule of M .
(5) (Theorem 3.5) Let Q, K be graded submodules of M . If Q and K are

almost semiprime in M such that Q+K ̸= M and Q ∩K ⊆ Mg for all g ∈ G,
then we prove that Q+K is almost semiprime in M .

2. Semiprime submodules

In this section, we deal with graded multiplication modules over graded
rings. We define a semiprime submodule of a graded multiplication module
over a graded ring to characterize it. And then we discuss several properties of
semiprime submodules.

Let M be a multiplication module over a ring R. Let K be a submodule
of M . Then there exists an ideal I of R such that K = IM . Consider the
following descending chain of ideals of R:

I ⊇ I2 ⊇ · · · .

Then we can get a descending chain of submodules of M

K ⊇ K2 ⊇ · · · .
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From this, we can see the following: if K ⊆ N , where N is a submodule of M ,
then Kn ⊆ N for every positive integer n. In view of this it is natural to ask a
question: when Kn ⊆ N , where n is a positive integer, under what conditions
can we get K ⊆ N? The following result deals with this question.

Theorem 2.1. Let M be a graded multiplication module over R and P be a
proper graded R-submodule of M . Then the following statements are equivalent.

(i) P is semiprime.
(ii) If (Rx)n ⊆ P , where x ∈ h(M) and n is a positive integer, then x ∈ P .
(iii) If Kn ⊆ P , where K is a graded submodule of M and n is a positive

integer, then K ⊆ P .
(iv) If L is a graded submodule of M such that P ⊂ L ⊆ M , then (P :R L)

is a graded semiprime ideal of R.
(v) (P :R M) is a graded semiprime ideal of R.
(vi) grad(P ) = P .
(vii) If Rx ·Ry ⊆ P , where x, y ∈ h(M), then Rx ∩Ry ⊆ P .
(viii) The factor R-module M/P has no nonzero nilpotent submodule.
(ix) There exits a graded semiprime ideal p of R with (0 :R M) ⊆ p such

that P = pM .

Proof. (i) ⇒ (ii) Let P be a graded semiprime submodule of M . Assume
that (Rx)n ⊆ P , where x ∈ h(M) and n is a positive integer. Since M is a
multiplication module, there exists a graded ideal a of R such that Rx = aM .
Then

anM = (aM)n = (Rx)n ⊆ P.

Since P is a graded semiprime submodule of M , we have Rx = aM ⊆ P .
Therefore x ∈ P .

(ii) ⇒ (iii) Assume that Kn ⊆ P , where K is a graded submodule of M
and n is a positive integer. To show that K ⊆ P , it suffices to show that every
element x of h(K) belongs to P . Let x be an arbitrary element of h(K). Then
x ∈ h(M) and (Rx)n ⊆ Kn ⊆ P . By (ii), x ∈ P .

(iii) ⇒ (iv) Assume that (iii) is true. Assume that L is a graded submodule
of M such that P ⊂ L ⊆ M . Then (P :R L) is proper. By Lemma 1.2, (P :R L)
is graded.

Also, assume that anb ⊆ (P :R L), where n is a positive integer and a and
b are graded ideals of R. Then

((ab)L)n = (ab)nL = bn−1((anb)L) ⊆ bn−1P ⊆ P.

Notice that (ab)L is a graded submodule of M . Then by (iii) we have
(ab)L ⊆ P . This shows that ab ⊆ (P :R L). Hence (P :R L) is a semiprime
ideal.

(iv) ⇒ (v) Assume that (iv) is true. Taking L by M , we can see that
(P :R M) is a graded semiprime ideal of R.

(v) ⇒ (vi) Assume that (v) is true. Clearly, P ⊆ grad(P ). Conversely,
assume that (Rx)n ⊆ P for some positive integer n. Then we need to show
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that x ∈ P . If n = 1, then x ∈ P ; we are done. Assume that n > 1. Since
M is a graded multiplication module, there is a graded ideal a of R such that
Rx = aM . Then

anM = (Rx)n ⊆ P.

So, an−1a = an ⊆ (P :R M). Since (P :R M) is graded semiprime, we get
a ⊆ (P :R M). Hence

x ∈ Rx = aM ⊆ (P :R M)M = P,

as required.
(vi) ⇒ (vii) Assume that (vi) is true. Assume that Rx · Ry ⊆ P , where

x, y ∈ h(M). Let m be an arbitrary element of Rx ∩Ry. Then Rm ⊆ Rx and
Rm ⊆ Ry. Hence

(Rm)2 ⊆ (Rx) · (Ry) ⊆ P.

By (vi), Rm ⊆ P . Hence m ∈ P . This shows that Rx ∩Ry ⊆ P .
(vii) ⇒ (viii) Assume that (vii) is true. Let x+P be an arbitrary nilpotent

element of M/P . Then there exists a positive integer n such that ((Rx +
P )n/P ) = 0 in M/P . There exists a graded ideal a of R such that Rx = aM .
So,

((Rx)n + P )/P = (anM + P )/P = an(M/P ) = ((Rx+ P )n/P ) = 0.

This implies that (Rx)n ⊆ P . By (vii),

x ∈ Rx =

n times︷ ︸︸ ︷
Rx ∩Rx ∩ · · · ∩Rx ⊆ P.

Hence x+ P = 0 + P .
(viii) ⇒ (ix) Assume that (viii) is true. Since M is a graded multiplication

module, there exists a graded ideal p of R such that P = pM . To show that
p is semiprime, assume that anb ⊆ p, where a and b are graded ideals of R.
Then (ab)n ⊆ p. So,

((ab)M)n = (ab)nM ⊆ pM = P.

This means that

(((ab)M + P )/P )n = (((ab)M)n + P )/P = {0 + P}.
By (viii), ((ab)M + P )/P = {0 + P}. This implies that

(ab)M ⊆ ((ab)M + P = P = pM.

Since M is multiplication, it follows that ab ⊆ p. Therefore p is semiprime.
Also, let a be an arbitrary element of (0 :R M). Then aM = 0 ⊆ pM . Since

M is multiplication, it follows that a ∈ p. Hence (0 :R M) ⊆ p.
(ix) ⇒ (i) Assume that (ix) is true. To show that P is semiprime, assume

that anK ⊆ P , where a is a graded ideal of R and K is a graded submodule
of M , and n is a positive integer. Since M is a graded multiplication module,
there exists a graded ideal b of R such that K = bM . Then

(anb)M = anK ⊆ P = pM.
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Since p + (0 :R M) = p, it follows from [6, Theorem 9, p. 231] that either
anb ⊆ p or M = (p :R anb)M . If anb ⊆ p, then we have ab ⊆ p since p is
semiprime. Hence aK = a(bM) = (ab)M ⊆ pM = P ; we are done. Or, assume
that M = (p :R anb)M . Notice that

an(p :R anb)b = (p :R anb)anb ⊆ p.

Since p is semiprime, we have (p :R anb)ab ⊆ p. Hence

aK = a(bM) = (ab)M = ((p :R anb)ab)M ⊆ pM = P.

Hence P is semiprime. □

Corollary 2.2. Let R be a graded ring and M be a graded multiplication module
over R. Then a proper graded submodule P of M is semiprime if and only if
M \ P is multiplicatively closed.

Proof. Let P be a graded semiprime submodule of M and let x ∈ M \P . Since
P is graded semiprime, it follows from Theorem 2.1 that (Rx)n ⊈ P for every
positive integer n. Hence (Rx)n ∩ (M \ P ) ̸= ∅. This shows that M \ P is
multiplicatively closed.

Conversely, assume that M \ P is multiplicatively closed. To show that
P is semiprime, assume that (Rx)n ⊆ P , where n is a positive integer and
x ∈ h(M). We need to show that x ∈ P . Suppose on the contrary that
x ̸∈ P . Then x ∈ M \ P . By our assumption, (Rx)n ∩ (M \ P ) ̸= ∅. Take
y ∈ (Rx)n ∩ (M \ P ). Then y ∈ (Rx)n ⊆ P . This contradiction shows that
x ∈ P , as needed. □

Let M be a graded multiplication module over a graded ring R. Then
N · K ⊆ N ∩ K for each pair of graded submodules N and K of M . M
is said to be regular if for each pair of graded submodules N and K of M ,
N ·K = N ∩K.

Corollary 2.3. Let R be a graded ring and M be a regular graded multiplication
module over R. Then every proper graded submodule of M is semiprime.

The condition “M being multiplication” in Theorem 2.1 cannot be omitted.
The example of this is given below.

Example 2.4. First, consider the set Z of all integers. Then (Z, +) is a group
with additive identity 0 and (Z, +, · ) is a commutative ring with identity 1.
Take G = (Z, +) and R = (Z, +, · ). Define

Rg =

{
Z if g = 0
0 otherwise.

Then each Rg is an additive subgroup of R and R is their internal direct sum.
In fact, 1 ∈ R0 and RgRh ⊆ Rg+h. That is, R = ⊕g∈GRg. Hence R is a G-
graded ring. In other words, the ring (Z, +, · ) of integers is a (Z, +)-graded
ring.
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Next, let M be the set Z× Z. Then M can be given a Z-module structure.
Define

Mg =

 Z× 0 if g = 0
0× Z if g = 1
0× 0 otherwise.

Then M = ⊕g∈GMg. Hence M is a G-graded R-module. In other words, the
Z-module (Z× Z, +, · ) is a Z-graded Z-module.

Now, consider a submoduleN = 9Z×0 ofM . Then it is a graded submodule.
(N :R M) = 0 and so it is a graded semiprime ideal of R. But the graded
submodule N is not graded semiprime in M , since 32(2, 0) ∈ N but 3(2, 0) ̸∈ N .

By Theorem 2.1, we can see that the Z-module (Z× Z, +, · ) is not a mul-
tiplication module.

Lemma 2.5. Let R be a graded ring and M be a graded R-module. If P is a
graded submodule of M and x ∈ h(M), then both Rx and P + Rx are graded
submodules of M .

Proof. This follows from Lemma 1.2. □
Theorem 2.6. Let R be a graded ring and M be a graded multiplication module
over R. Let K be a graded submodule of M and S be a multiplicatively closed
subset of M such that K∩S = ∅. Then there is a graded semiprime submodule P
of M which is maximal with respect to the properties that K ⊆ P and P∩S = ∅.
Proof. Let Ω be the set of all graded submodules L of M such that K ⊆ L
and L ∩ S = ∅. K ∈ Ω, so in particular Ω ̸= ∅. By the Zorn lemma Ω has a
maximal element, say P . It is enough to show that P is semiprime. To show
that P is semiprime, assume that (Rx)n ⊆ P , where n is a positive integer and
x ∈ h(M). Then we need to show that x ∈ P . Suppose on the contrary that
x ̸∈ P . Then P ⊂ P+Rx. By Lemma 2.5, P+Rx is graded. By the maximality
of P , P + Rx ̸∈ Ω. Hence (P + Rx) ∩ S ̸= ∅. Take y ∈ (P + Rx) ∩ S. Then
y ∈ P + Rx and y ∈ S. Since M is a multiplication module and (Rx)n ⊆ P ,
we can show that

(P +Rx)n ⊆ P + (Rx)n = P.

Also, since S is multiplicatively closed and y ∈ S, we have (Ry)n ∩ S ̸= ∅.
Hence

∅ ̸= (Ry)n ∩ S ⊆ (P +Rx)n ∩ S ⊆ P ∩ S,

contradicting the disjointness of P and S. This shows that x ∈ P . Therefore
P is a graded semiprime submodule. □
Lemma 2.7. Let R be a graded ring and M be a graded multiplication module
over R. Let Ω be a nonempty family of graded submodules of M .

(i) If each member of Ω is semiprime in M , then so is ∩Q∈ΩQ.
(ii) If each member of Ω is semiprime in M , Ω is totally ordered by in-

clusion, and ∪Q∈ΩQ ̸= M , then ∪Q∈ΩQ is a proper graded semiprime
submodule of M .
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Proof. (i) Assume that each member of Ω is semiprime inM . Then by Theorem
2.1,

grad(∩Q∈ΩQ) ∩ h(M) ⊆ (∩Q∈Ωgrad(Q)) ∩ h(M)

= ∩Q∈Ω(grad(Q) ∩ h(M))

= ∩Q∈Ω(Q ∩ h(M))

= (∩Q∈ΩQ) ∩ h(M).

It is clear that the converse inclusion holds. Hence by Theorem 2.1 again,
∩Q∈ΩQ is semiprime.

(ii) Assume that Ω is totally ordered by inclusion and ∪Q∈ΩQ ̸= M . Then
it is clear that ∪Q∈ΩQ is a proper graded submodule of M . Now assume that
each member of Ω is semiprime in M . Then by Theorem 2.1,

grad(∪Q∈ΩQ) ∩ h(M) ⊆ (∪Q∈Ωgrad(Q)) ∩ h(M)

= ∪Q∈Ω(grad(Q) ∩ h(M))

= ∪Q∈Ω(Q ∩ h(M))

= (∪Q∈ΩQ) ∩ h(M).

It is clear that the converse inclusion holds. Hence by Theorem 2.1 again,
∪Q∈ΩQ is semiprime. □

A graded semiprime submodule P of a graded R-module M is said to be
minimal if whenever N ⊆ P and N is graded semiprime, then N = P .

Proposition 2.8. Let R be a graded ring and M be a graded multiplication
module over R. If N is a graded semiprime submodule of M , then it contains
a minimal graded semiprime submodule.

Proof. Consider the set Σ of all graded semiprime submodules P of M such
that N ⊇ P . Since N ∈ Σ we see that Σ is not empty. Also ⊇ is a partial
order on Σ. Let Ω be a non-empty subset of Σ which is totally ordered by ⊇.
Therefore by Lemma 2.7(i), ∩P∈ΩP is a graded semiprime submodule of M .
Now the result holds by applying the Zorn lemma. □

Theorem 2.9. Let R be a graded ring and M be a graded multiplication module
over R. If N is a proper graded submodule of M and if M is finitely generated,
then there exists a graded semiprime submodule of M that contains N .

Proof. Assume that N is a proper graded submodule of M and M is finitely
generated. Let Σ be the collection of all proper graded submodules of M that
contains N . Then N ∈ Σ. In particular, Σ ̸= ∅. Order Σ by inclusion. Then
Σ is partially ordered. Let Ω be any chain of Σ. Take Q∗ = ∪Q∈ΩQ. Then by
Lemma 2.7(ii), Q∗ ∈ Σ. Ω has an upper bound in Σ. By the Zorn lemma, Σ
has a maximal member, say P . It remains to prove that P is semiprime.

Suppose that grad(P ) ∩ h(M) ̸= P ∩ h(M). Then we can take an element
x ∈ (grad(P ) ∩ h(M))\(P ∩ h(M)). Then x /∈ P , so P ⊂ P + Rx. By
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Lemma 2.7(ii) and by the maximality of P , we must have P +Rx = M . Since
x ∈ grad(P ), there exists a positive integer n such that xn ∈ P . Hence

M = Mn = (P +Rx)n ⊆ P + (Rx)n ⊆ P,

so M = P . This contradiction shows that grad(P ) ∩ h(M) = P ∩ h(M).
Therefore it follows from Theorem 2.1 that P is semiprime. □

3. Almost semiprime submodules

In this section we define an almost semiprime submodule of a graded mul-
tiplication module over a graded ring and discuss the sum of two almost
semiprime submodules.

Let R be a graded ring and M be a graded multiplication module over R.
Let Q be a proper graded submodule of M . Then Q∩h(M) ⊆ grad(Q)∩h(M).
The following two statements are true:

grad(0M ) ∩ h(M) ⊆ grad(Q) ∩ h(M),

grad(0M ) ∩Q ∩ h(M) ⊆ Q ∩ h(M).

More precisely, we can draw their lattice diagram as follows:

grad(Q) ∩ h(M)

jjjj
jjjj

jjjj
jjj

RRR
RRR

RRR
RRR

R

grad(0M ) ∩ h(M)

TTTT
TTTT

TTTT
TTT

Q ∩ h(M)

lll
lll

lll
lll

l

grad(0M ) ∩Q ∩ h(M)

Then it is easy to see that

(Q ∩ h(M))\(grad(0M ) ∩Q ∩ h(M))

⊆ (grad(Q) ∩ h(M))\(grad(0M ) ∩ h(M)).

Remark 3.1. This statement is the same as the following one but the following
one is much easier for us to make sure if it is true.

(Q\(Q ∩ grad(0M )) ∩ h(M) ⊆ (grad(Q)\grad(0M )) ∩ h(M).

Definition 3.2. Let R be a graded ring and M be a graded multiplication
module over R. A proper graded submodule Q of M is said to be almost
semiprime if

(grad(Q) ∩ h(M))\(grad(0M ) ∩ h(M))

= (Q ∩ h(M))\(grad(0M ) ∩Q ∩ h(M)).
(3.1)

Let g ∈ G. Likewise, a proper graded submodule Qg of the Re-module Mg

is said to be almost g-semiprime if

(3.2) (grad(Qg) ∩Mg)\(grad(0Mg
) ∩Mg) = Qg\(grad(0Mg

) ∩Qg).
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It is immediate that the zero submodule of a graded multiplication module
is graded and almost semiprime.

Let R be a graded ring and M be a graded multiplication module over R.
Let Q be a proper graded submodule of M . Assume that Q is semiprime.
Then it follows from Theorem 2.1 that grad(Q) ∩ h(M) = Q ∩ h(M), so that
grad(0M )∩h(M) = grad(0M )∩Q∩h(M). Hence Q is almost semiprime. This
shows that every semiprime submodule of M is almost semiprime. Conversely,
if Q is almost semiprime and grad(0M ) ∩ h(M) = grad(0M ) ∩Q ∩ h(M), then
Q is semiprime.

Proposition 3.3. Let R be a graded ring, M be a graded multiplication module
over R and Q be a proper graded submodule of M . If Q is almost semiprime,
then for every g ∈ G, Qg is almost g-semiprime in Mg.

Proof. Assume that Q is almost semiprime. Then the equality (3.1) holds. Let
g ∈ G. Note that Q = ⊕g∈GQg. Then taking the intersection of the equation
(3.1) with Mg, we can get (3.2). Hence Qg is almost semiprime. □
Lemma 3.4. Let R be a graded ring, M a graded multiplication module over
R and K,Q graded submodules of M such that K ⊆ Q. Then the following
statements are true.

(i) If Q is almost semiprime such that K ⊆ Mg for all g ∈ G, then Q/K
is almost semiprime in M/K.

(ii) If K and Q/K are almost semiprime in M and M/K, respectively,
then Q is almost semiprime in M .

Proof. If K ⊆ Q, then we have already known that M/K and Q/K are G-
graded.

(i) Assume that Q is almost semiprime such that K ⊆ Mg for all g ∈ G.
Then K ⊆ ∪g∈GMg = h(M) and

h(M/K) = ∪g∈G((Mg +K)/K) = ∪g∈G(Mg/K) = h(M)/K.

Now since the equality (3.1) holds, direct computation gives

(grad(Q/K) ∩ h(M/K))\(grad(0M/K) ∩ h(M/K))

= (Q/K ∩ h(M/K))\(grad(0M/K) ∩Q/K ∩ h(M/K)).
(3.3)

Hence Q/K is almost semiprime.
(ii) In order to show that Q is almost semiprime, we show that (3.1) holds.

Let x belong up in the equality (3.1). Then (Rx)s ⊆ Q for some positive
integer s. This implies that (R(x+K))s = ((Rx)s +K)/K is in Q/K. Hence
x+K ∈ grad(Q/K). Now, there are two cases to consider.

Case 1. Assume that x+K is in grad(0M/K). Then there exists a positive
integer t such that (R(x + K))t = 0 in M/K. So, (Rx)t ⊆ K. This implies
that x ∈ grad(K). Since K is almost semiprime, we have

x ∈ (grad(K) ∩ h(M))\(grad(0M ) ∩ h(M))

= (K ∩ h(M))\(grad(0M ) ∩K ∩ h(M)).
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Hence since K ⊆ Q, x belongs down in the equality (3.1).
Case 2. Assume that x + K is not in grad(0M/K). Then x + K belongs

up in the equality (3.3). Since Q/K is almost semiprime, the equality (3.3)
holds. Hence x + K belongs down in the equality (3.3). This implies that
x+K ∈ Q/K. Then there exists an element y ∈ Q such that x+K = y +K.
This implies that x−y ∈ K, so that x = (x−y)+y ∈ K+Q = Q since K ⊆ Q.
Hence x belongs down in the equality (3.1). This shows that the equality (3.1)
holds. Therefore Q is almost semiprime. □
Theorem 3.5. Let R be a graded ring, M be a graded multiplication module
over R and K, Q be graded submodules of M . If K and Q are almost semiprime
in M such that Q + K ̸= M and Q ∩ K ⊆ Mg for all g ∈ G, then Q + K is
almost semiprime in M .

Proof. Assume that Q and K are almost semiprime in M such that Q+K ̸= M
and Q ∩K ⊆ Mg for all g ∈ G. Then Lemma 3.4(i), Q/(Q ∩K) is also almost
semiprime in M/(Q∩K). Notice that Q/(Q∩K) ∼= (Q+K)/K by the second
isomorphism theorem for modules. Then (Q + K)/K is almost semiprime in
M/K. Hence by Lemma 3.4(ii), Q+K is almost semiprime. □
Acknowledgements. The authors would like to appreciate the referees for
giving us the several corrections.
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