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FULLY PRIME MODULES AND FULLY SEMIPRIME
MODULES

JOHN A. BEACHY AND MAURICIO MEDINA-BARCENAS

ABSTRACT. Fully prime rings (in which every proper ideal is prime) have
been studied by Blair and Tsutsui, and fully semiprime rings (in which
every proper ideal is semiprime) have been studied by Courter. For a
given module M, we introduce the notions of a fully prime module and
a fully semiprime module, and extend certain results of Blair, Tsutsui,
and Courter to the category subgenerated by M. We also consider the
relationship between the conditions (1) M is a fully prime (semiprime)
module, and (2) the endomorphism ring of M is a fully prime (semiprime)
ring.

1. Introduction

It will be assumed throughout that R is an associative ring with identity,
and that M is a fixed nonzero left R-module. A module X in R—Mod, the
category of unital left R-modules, is said to be M-generated if there exists an
R-epimorphism from a direct sum of copies of M onto X. The category o[M]
of modules subgenerated by M is defined to be the full subcategory of R—Mod
that contains all modules g X such that X is isomorphic to a submodule of
an M-generated module. The reader is referred to [9] and [16] for results on
the category o[M]. It is an abelian category, and in R—Mod it is closed under
formation of homomorphic images, submodules, and direct sums.

The results in this paper concern the analog in o[M] of the notion of a prime
ideal of the ring R. We recall that a proper ideal P of R is said to be prime if
AB C P implies A C P or B C P for all ideals A, B of R, and it is said to be
semiprime if A2 C P implies A C P for all ideals A of R, or, equivalently, if P
is an intersection of prime ideals of R.

A subfunctor 7 of the identity on o[M] is called a preradical of o[M]; it is
called a radical if 7(X/7(X)) = (0) for all X in o[M]. If p and 7 are preradicals
of o[M] such that p(X) C 7(X) for all modules g X, then the notation p < 7
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is used. If N is any submodule of M, we define the preradicals trd/ and rej]]‘\/,[
as follows:

trif (X) = X A{f(N) | f € Homp(M, X)}
and
rejyy (X) =N {71 (N) | f € Homp(X, M)}
for all X in R—Mod. We note that if IV is a fully invariant submodule of M,
then tr}! and rejy are defined by the property that tri (M) = N = reji (M),
and if 7 is any preradical with 7(M) = N, then tr} <7 < reji.
For submodules N, L of M, we define a product as follows:

NyL =t} (L) = Y{J(N) | f € Homp(M, L)}.

A proper submodule @ of M is called a prime submodule if @ is fully invariant
in M, and Ny, L C Q implies N C Q or L C @ for all fully invariant submodules
N, L of M. Similarly, Q is called a semiprime submodule if @ is fully invariant
in M, and NyyN C @ implies N C @ for all fully invariant submodules N of
M. The reader is referred to [3], [7], [13] and [14] for general properties of the
product defined above and of prime and semiprime modules.

Finally, a submodule N of M is said to be idempotent if NyyN = N.

In the first section of the paper, we show that if @ C M is a prime (resp.
semiprime) submodule, then anng(M/Q) is a prime (resp. semiprime) ideal of
R. We then give the definition of a fully prime (fully semiprime) module, and
some preliminary lemmas.

In [8], Courter studies rings in which every proper ideal is semiprime. He
gives sixteen equivalent conditions, including the statement that every proper
ideal of a ring is semiprime if and only if every ideal of the ring is idempotent.
He also notes that this condition holds in any von Neumann regular ring. In
fact, [10, Corollary 1.18] states that the ring R is von Neumann regular if and
only if every ideal of R is idempotent and R/P is von Neumann regular for all
prime ideals P of R.

In Section 3, we show that twelve of Courter’s characterizations can be ex-
tended to the category o[M]. Our most basic example of a module all of whose
proper fully invariant submodules are semiprime is that of a semisimple mod-
ule. In fact, we show that for a left Artinian ring, these are the only examples.
More generally, regular modules provide additional examples. We show that if
every proper submodule of M is semiprime, then the same condition holds for
any direct sum M) of copies of M.

In [4], Blair and Tsutsui studied rings in which every proper ideal is prime.
They showed that every proper ideal of R is prime if and only if the ideals of R
are totally ordered and idempotent. They note that in the commutative case
the only such rings are fields.

In Section 4, we extend the above characterization to o[M]. Using Gabriel’s
condition H for the module M, we show that if M is a fully prime finitely gener-
ated module over a commutative Noetherian ring, then anng (M) is a maximal



FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES 1179

ideal of R, and M is a finite dimensional vector space over R/anng(M). In
general, the most basic example of a fully prime module is a homogeneous
semisimple module, and a finitely generated module over a left Artinian ring
is fully prime if and only if it is semisimple and homogeneous.

In Section 5, we show that the notion of a prime (semiprime) submodule is
Morita invariant, and then the notion of a fully prime (fully semiprime) module
is also a Morita invariant. Theorem 5.8 shows that if R is a fully prime ring and
P is a finitely generated projective R-module, then Endg(P) is a fully prime
ring. If M is a finitely generated quasi-projective module, then Theorem 5.12
(Theorem 5.4) shows that if M is a fully prime (fully semiprime) module, then
Endgr(M) is a fully prime (fully semiprime) ring. In Theorem 5.9 we give a
partial converse: if every fully invariant submodule of M is M-generated and
Endg(M) is a fully prime ring, then M is a fully prime module.

2. Definitions and preliminary results

Since a left ideal of R is fully invariant as a submodule if and only if it is
an ideal of R, and the product IrJ of two ideals I, J of R is the usual product
1J, it follows that the prime (resp. semiprime) submodules of rR are just the
prime (resp. semiprime) ideals of R. We also note the following connection
between prime submodules and prime ideals.

Proposition 2.1. Let M be a left R-module.

(a) If Q is a prime submodule of M, then anng(M/Q) is a prime ideal of
R.

(b) If Q is a semiprime submodule of M, then anng(M/Q) is a semiprime
ideal of R.

Proof. (a) Let A, B be ideals of R with AB C anng(M/Q). Then AM and
BM are fully invariant submodules of M, so we have
(AM)p(BM) =5 {f(AM) | f € Homp(M, BM)}
= AQC{f(M) | f € Homp(M, BM)})
C A(BM) C Q.
Since @ is a prime submodule, we have either AM C @Q or BM C @. Thus
either A C anng(M/Q) or B C anngr(M/Q), showing that anng(M/Q) is a

prime ideal.
(b) The proof is only a minor modification of the one given for part (a). O

Corollary 2.2. Let M be a left module over a left Artinian ring R.

(a) If Q is a prime submodule of M, then M/Q is semisimple and homoge-
neous.

(b) If Q is a semiprime submodule of M, then M/Q is semisimple.

Proof. (b) If @ is a semiprime submodule of M, then anng(M/Q) is a semi-
prime ideal of R by Proposition 2.1(b). Since M/Q is a module over the
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semisimple Artinian ring R/ anng(M/Q), it follows that M/Q is a semisimple
module.

(a) If @Q is a prime submodule of M, then it follows from the proof of part
(b) that M/Q is a semisimple module. Since anng(M/Q) is a prime ideal of
R, the ring R/ anng(M/Q) has only one isomorphism class of simple modules,
so M /@ is homogeneous. ([

Definition. The module g M is said to be a fully prime module (resp. fully
semiprime module) if every proper fully invariant submodule N C M is a prime
(resp. semiprime) submodule.

The ring R is called fully prime (resp. fully semiprime) if R is a fully prime
(resp. semiprime) module.

The reader is cautioned that these definitions are intended to make sense in
the category o[M]. In the literature, there are several definitions of a prime sub-
module that seem appropriate in the category R—Mod. Of course, a fully prime
module (resp. fully semiprime module) is a prime (resp. semiprime) module (in
the sense of our definition), and it is a module over a prime (resp. semiprime)
ring by Proposition 2.1.

Example 2.3. It follows immediately from Corollary 2.2 that any semiprime
module over a left Artinian ring is fully semiprime. Similarly, any prime module
over a left Artinian ring is fully prime.

Before investigating fully semiprime modules, we need some preliminary
results.

Lemma 2.4. Let N be a fully invariant submodule of rM . If every fully invari-
ant submodule of M is idempotent in M, then every fully invariant submodule
of N is idempotent in N.

Proof. Assume that every fully invariant submodule of M is idempotent, and
let L C N be a fully invariant submodule of N. Then L is easily seen to be
fully invariant in M, so by assumption we have Lj;L = L, but we must show
that LyL = L. By the definition of Lj;L, for each element y € L there exist
fi € Homp(M, L) and z; € L, for 1 < ¢ < k, such that y = Zle fi(z;). For
1 <i <k, let g; be the restriction of f; to N. Since L C N, we have g¢;(z;) =
fi(x;) for 1 <i <k, and thus y = Zle gi(x;), showing that L C LyL. O

Remark 2.5. The proof of Lemma 2.4 can easily be modified to show that if
every submodule of M is idempotent, then the same is true for any submodule
N CM.

We give the following definition to simplify our earlier notation.

Definition. Let M be a left R-module, and let NV, L be submodules of M. We
use the following notation:

NL '={me M| f(m) € N, Vf € Homgr(M, L)} .
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Since NL=! = rej]L\mL(M), it follows immediately that NL™! is a fully
invariant submodule of M.

Lemma 2.6. The following conditions hold for submodules N, L of rM:
(a) (NL’l)M L CN;
(b) if K € M is any submodule such that KpyL C N, then K C NL™1;
() (NNL)L™' =NL™Y
(d) N C (Ny L)Lt

If N is a fully invariant submodule of M, then the following condition holds:
() NC NLL.

Proof. (a) This follows immediately from the definition of NL~1.

(b) If KpyL C N, then f(K) C N for all f € Homgr(M, L), and thus
KCNL™ .

(c) This follows immediately from the definition of (N N L)L™!, since for
f € Homp(M, L) we have f(m) € NN L if and only if f(m) € N.

(d) For any homomorphism g € Hompg (M, L), we have

g(N) € > Af(N) | f € Homp(M, L)} = Ny L,

and so it follows from the definition of (Np;L) L™! that N C (NpL) L1,
(e) Since N is a fully invariant submodule, we have Ny;L € N N L, so it
follows from part (b) that N C NL™1. O

Lemma 2.7. The equality (NayyL)L™) L = NagL holds for all submodules
N, L of M.

Proof. Since Ny L C L, we have (NyyL)L Yy L C (NyyL)N L = Ny L by

part (a) of Lemma 2.6. On the other hand, Ny L C ((NaL)L71)p L since
N C (Npy L) L71 by part (d) of Lemma 2.6. O

Definition. For submodules N, L of g M, let
NIL=Y{K|KCM and NyK = Ny L},

where K is any submodule of M.

Lemma 2.8. If gM is projective in o[M)], then Nys (N_lL) = Ny L.

Proof. Since M is projective in o[M], Lemma 2.1 of [6] shows that

Nu (Z{K | K C M and Ny K = NML})
= YNy ({K | K € M and Ny K = Ny L),

and so by definition Ny (N7*L) = Ny L. O
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3. Fully semiprime modules

With the preliminary lemmas in hand, we are now able to extend results of
Courter [8] to the category o[M].

Theorem 3.1. The following conditions are equivalent for the module rM:
(1) M is a fully semiprime module;
(2) Ny L = NN L for all fully invariant submodules N, L of M;
(3) (NL™YYNL = NnNL for all fully invariant submodules N, L of M:;
(4) (NL’l) NK = NNK for all fully invariant submodules N, L, K of M
such that L O K
(5) every fully invariant submodule of M is idempotent.

Proof. (1) = (2): If N, L are fully invariant submodules of M, then Ny L is
fully invariant, and Ny, L C NN L. If NyyL = M, then NN L = M. Thus we
may assume that Npy;L C M, so by assumption it is a semiprime submodule.
Then

(NN L)y(NNL)C NyL

implies that NN L C Ny L.

(2) = (3): Let N, L be fully invariant submodules of M. Since NL~! is
fully invariant in M, we have (NL™')NL C (NL™'), L by the condition (2).
Then (NL'),, L C L always holds, and (NL~'), L C N by Lemma 2.6(a).

To show the reverse inclusion, note that since N is fully invariant in M we
have N C NL~! by Lemma 2.6(e), and so N N L C (NL_l) NL.

(3) = (4): Let N, L, K be fully invariant submodules of M such that L D K.
Then K = LN K, and so

(NLY)NK=(NLHYNELNK)=(NLT")NL)NK)
=(NNL)NK=NnN(LNK)=NNK.

(4) = (5): Let L be a fully invariant submodule of M. By Lemma 2.6(d)
we have L C (LyL)L™!, and so L C ((LML) L’l) N L. Assuming the con-
dition (4) for N = Ly L and K = L, we have L C ((LyL)L™')NL =
(LpL)NL = Ly L, and it follows that L is an idempotent submodule.

(5) = (1): Assume that every fully invariant submodule of M is idempotent,
and let IV be a proper fully invariant submodule of M. If L is a fully invariant
submodule of M such that Lj;L C N, then L C N since L = Ly, L. [l

Corollary 3.2. The following conditions hold for any fully semiprime module
RM:

(a) NyyL = Ly N for all fully invariant submodules N, L C M;

(b) every fully invariant submodule of M is M-generated;

(¢) every fully invariant submodule of M is a fully semiprime module.

Proof. (a) This follows immediately from Theorem 3.1(2).
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(b) If N is a fully invariant submodule of M, then by part (a) we have
Ny M = My N. Since N C Ny M, we have N = My, N, which shows that NV
is M-generated.

(c) This follows immediately from Theorem 3.1(5) and Lemma 2.4. O

If N is a direct summand of zp M, then the natural projection maps M onto
N, and so it is clear that IV is an idempotent submodule of M. Thus every
proper submodule of a semisimple module is idempotent, and so the semisimple
R-modules provide our most basic examples of fully semiprime modules. For a
left Artinian ring, it follows from Corollary 2.2 that they are the only examples.

Example 3.3. The module g M is said to be regular if every cyclic submodule
of M is a direct summand of M. It follows from [12, Proposition 2.2] that
every regular module is fully idempotent (in the sense that Ny N = N for
every submodule N). Thus the class of regular modules provides examples
of fully semiprime modules. In fact, [12, Corollary 2.4] shows that if M is a
nonzero finitely generated quasi-projective module, then M is regular if and
only if it is a fully semiprime module and every prime factor module of M is
regular.

Given any module M and any indexing set I, it is known that every fully
invariant submodule of M) has the form N for some fully invariant sub-
module N of M. This implies that the lattice of fully invariant submodules of
M is isomorphic to the lattice of fully invariant submodules of M ().

Proposition 3.4. Let M be a fully semiprime module. Then MY is fully
semiprime for any indez set 1.

Proof. Let n; : M — MW be the canonical inclusions. Let N be a fully
invariant submodule of M), Since N is fully invariant, there is a fully invariant
submodule L of M such that N = L), Let (l;)icr € N = L) By hypothesis,
Ly L = L. Then, for each i € T
ki
bi=32:1 fijlai)
with f;; € Hompg(M, L) and a;; € L. For each 1 < j < k, there exists a unique
homomorphism @;crfi; : MDD — LU, Let k = max{k; | i € I}. Adding zeros
as needed, we have
ki k
(tier = (S5 fislaig)) = iy (Figlaig))iey
= Yo ®ierfig) (ai)ier € (L), (LD).

Thus N = Ny, N. By Theorem 3.1(6), M) is fully semiprime. O

Theorem 2.7 of [8] implies that the direct product of two fully semiprime
rings is fully semiprime.

Proposition 3.5. Let gM and g N be fully semiprime modules. Then M & N
is a fully semiprime module.
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Proof. If Q) is any fully invariant submodule of M @& N, then it is invariant under
the projection mappings onto M @ (0) and (0) @ N. Therefore Q = K & L for
K={xeM]|(z,00cQtand L ={y € N | (0,y) € Q}, and K and L are
fully invariant submodules of M and N, respectively. Then

QuonQ =2 {f(K®L)|f€Homr(M®N,K® L)}
2 Af(K) | f € Homg(M,K)} & > {g(L) | g € Hompg(N, L)}
= (KuK)® (LNL).

Thus @ is an idempotent submodule since by hypothesis K and L are idem-
potent submodules of M and N, respectively. It follows from Theorem 3.1(5)
that M @ N is a fully semiprime module. t

In [8], Courter gives sixteen equivalent conditions for a ring to be fully
semiprime, labeled A - P. Our Theorem 3.1 gives the analogs in o[M] of con-
ditions A, C, E, F and H. We have listed the analog of B as Corollary 3.2(c).
The analogs of conditions D and G, which appear to require the assumption
that M is projective in o[M], are given in Proposition 3.7. Courter’s conditions
I - L involve right ideals, and in o[M] we have no analog of a right ideal. In
Proposition 3.8, we give a condition for R-submodules of M similar to Courter’s
condition I, but it is much stronger than the other conditions, since it is equiv-
alent to the condition that every submodule of M is idempotent. Courter’s
conditions M - P involve left ideals, and the analogs of these conditions are
given in the following proposition.

Proposition 3.6. The following conditions are equivalent for the module rM:

(1) M is a fully semiprime module;

(6) Xy L O XNL for all submodules X, L of M such that L is fully invariant
imn M;

(7) XL 2 X for all submodules X C L of M such that L is fully invariant
m M;

(8) (XL™Y)NL C XNL for all submodules X, L of M such that L is fully
invartant in M,

(9) (XL’l) NL C X for all submodules X C L of M such that L is fully
invariant in M.

Proof. (1) = (6): Let X, L be submodules of M, such that L is a fully invariant
submodule of M. We have X N L C ((XyL)L™') N L since X C (XpL)L™*
by Lemma 2.6(d). Note that X/ L is a fully invariant submodule of L, and
so it is a fully invariant submodule of M. Since M is a fully prime module,
by Theorem 3.1(3) we have ((XpL)L™')NL = (XyL)NL = XL, and it
follows that X "L C X/ L.

(6) = (7): Since X N L = X, it is clear that the condition (7) is a special
case of the condition (6).
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(7) = (1): Given any fully invariant submodule L of M, that L C Ly L
follows immediately upon taking X = L in the condition (7). Thus the condi-
tion (5) of Theorem 3.1 holds, and M is a fully prime module.

(6) = (8): Since Lemma 2.6(a) holds for all submodules, the first part of
the proof that (2) implies (3) in Theorem 3.1 remains valid, showing that (6)
implies (8).

(8) = (1): It follows from Lemma 2.6(e) that X N L C (XL™') N L, and so
condition (3) of Theorem 3.1 is a special case of the condition (8).

(8) < (9): If the condition (8) holds and X N L = X, then the condition (9)
holds. On the other hand, if the condition (9) holds, then for any submodule
X we have (XL ) NL=((XNL)L™')NLC XNLby Lemma 2.6(d). O

Proposition 3.7. If M is projective in o[M], then the following conditions
are equivalent for the module rM:

(1) M is a fully semiprime module;

(10) NN (N7'L) = NN L for all fully invariant submodules N, L of M;

(11) Kn (NflL) = KN L for all fully invariant submodules K, N, L of M
such that N O K.

Proof. (1) = (10): It is clear from the definition of N~'L that L C N~'L, and
so we always have NNL C NN (NflL). Lemma 2.8 shows that Ny, (N’lL) =
Ny L, since M is projective in o[M]. Thus

NuyL=Ny (NT'L)C NN (NT'L) .
Since M is fully semiprime, by the condition (2) of Theorem 3.1, we have
NNL= NpL, and therefore NNL C NN (N_IL).

(10) = (1): Let N, L be fully invariant submodules of M, and assume that
the condition (10) holds. Since N is fully invariant, we have Ny;L C N N L.
Since NjL is a fully invariant submodule of M, we can substitute N, L for L,
and so

NN (N (NyL)) = NN (NyL)=NyL.
It follows from the definition that L C N~ (Ny/L), and thus
NNLCNN(N'(NyL)) =NyL,

so the condition (2) of Theorem 3.1 holds.
(10) < (11): It is clear that (10) is a special case of (11), and the proof that
(10) implies (11) is similar to the proof that (3) implies (4) in Theorem 3.1. O

Proposition 3.8. For the module gM, we have Ny X O N N X for all sub-
modules N, X of M such that N is fully invariant in M if and only if every
submodule of M is idempotent.

Proof. Let X be any submodule of M, and suppose that Ny; X 2 NN X for
all submodules N of M such that N is fully invariant in M. Then X X =
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((XMX)X_l)MX by Lemma 2.7, and (X3, X)X ! 2 X by Lemma 2.6(d).
Since (X3 X) X ! is fully invariant in M, by assumption we have

XX = (X X)X 1), X2 (XuX)X )NX DX,

and so X is an idempotent submodule of M.

Conversely, if every submodule of M is idempotent, and X,Y are any sub-
modules of M, then X NY = (X NY)y(XNY) C XY, since XNY C X
and XNY CY. O

4. Fully prime modules

It pM is semisimple and homogeneous, it is clear that its only fully in-
variant submodules are M and (0). This is the most elementary fully prime
module, and following the characterization of fully prime modules in the next
theorem we will investigate conditions under which a fully prime module must
be semisimple and homogeneous.

Theorem 4.1. The module g M is a fully prime module if and only if the fully
invariant submodules of M are idempotent and totally ordered.

Proof. First assume that M is a fully prime module. Then in particular it is a
fully semiprime module, and so every fully invariant submodule of M is idem-
potent by Theorem 3.1. Next, let N, L be proper fully invariant submodules
of M. Then N N L is also fully invariant, and by assumption it is a prime sub-
module. Since NpsL C N N L, it follows that either N C N N L, and therefore
N CL,or L C NN L, which implies that L C N.

To show the converse, assume that the fully invariant submodules of M are
totally ordered and idempotent, and let Q be a proper fully invariant submodule
of M. Suppose that N, L are fully invariant submodules of M such that Ny, L C
Q. Since the fully invariant submodules are totally ordered, we have either
N C Lor L CN. In the first case, NyyN C NysL,so N = Ny N C Q since N
is idempotent. In the second case, we Ly L C Ny L, so L = Ly, L C @ since L
is idempotent. (I

Proposition 4.2. Let M be a nonzero fully prime module, and let N be a fully
imvariant submodule of M. Then

(a) N is a fully prime module;

(b) if M is a quasi-projective module, then M /N is a fully prime module.

Proof. (a) By Theorem 4.1 the fully invariant submodules of M are totally
ordered and idempotent. Since each fully invariant submodule of N is also fully
invariant in M, it follows immediately that the fully invariant submodules of
N are totally ordered, and they are idempotent by Lemma 2.4.

(b) Let L/N be a proper fully invariant submodule of M/N. By [13, Lemma
17], L is fully invariant in M and so M/L = (M/N)/(L/N) is a prime module.
Furthermore, M/N is quasi-projective since M is quasi-projective. It follows
from [13, Proposition 18] that L/N is a prime submodule of M/N. O
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Proposition 4.3. Let M be a fully prime module. Then MY is a fully prime
module for any index set I.

Proof. Since M is fully prime, the fully invariant submodules of M are totally
ordered. Therefore, the fully invariant submodules of M () are totally ordered.
It follows from Proposition 3.4 that every fully invariant submodule of M () is
idempotent. Thus M is fully prime by Theorem 4.1. O

It is shown in [4] that a left fully bounded left Noetherian ring that is fully
prime is simple Artinian, generalizing the fact that a fully prime commutative
ring must be a field. We recall that a left Noetherian ring is left fully bounded
if and only if every finitely generated left module is finitely annihilated. To
extend this notion to o[M], the annihilator in M of a module X is defined as
follows:

anny (X) = rejjo) (M) = N {ker(f) | f € Homg(M, X)} .

We say that pX is finitely M-generated if there exists an epimorphism from a
finite direct sum of copies of M onto X, and that grX is finitely M -annihilated
if there exists an embedding of M/ anny (X) into a finite direct sum of copies
of X. Then M is said to satisfy Gabriel’s condition H if every finitely M-
generated module is finitely M-annihilated [1].

The Jacobson radical J(M) of the module M is defined to be the intersection
of the maximal submodules of M. If C is the class of simple modules in o[M],
then J(M) = rad¢(M), where rade (X) is the radical defined as the intersection
of the kernels of all homomorphisms from X into a module in C.

Theorem 4.4. Let M be a nonzero Noetherian module that satisfies Gabriel’s
condition H. If M is fully prime, then M is a homogeneous semisimple module.

Proof. First suppose that J(M)# (0). Then since M is Noetherian, J(M) is
finitely generated, and so it has a maximal submodule. For f € Hompg (M, J(M))
we therefore have

fIM)) = f(rade(J (M) € rade(J(M)) C J(M).

Since J(M) is a fully invariant submodule of M, this contradicts the assumption
that J(M) is an idempotent submodule.

Since M is Noetherian, there exists a maximal submodule M; C M, and then
annyy (M /M) is a fully invariant submodule of M. Since M satisfies Gabriel’s
condition H and M/M; is finitely M-generated, it follows that M /M, is finitely
M-annihilated, so there exists an embedding of M/ ann; (M /M) into a direct
sum (M /M;)™ of copies of M/M;. It follows that M/anny, (M /M) is a ho-
mogeneous semisimple module.

Suppose that My C M is a maximal submodule of M such that M /M, is not
isomorphic to M/M;. Then anny (M/Ms) is a fully invariant submodule of
M, so by assumption either ann ;s (M/Ms) C annp (M /M) or anny (M /M) C
annyg (M /Ms). If anny (M /Ms) C annps (M /M), then the projection mapping
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is a nonzero homomorphism from M/ anny;(M/Ms) onto M/ anny (M/My).
This is a contradiction since both modules are homogeneous semisimple and
M /M3 is not isomorphic to M/M;. We conclude that the intersection of all
maximal submodules of M is anny (M/My), so J(M) = annp (M /M), and
thus M = M/J(M) is a homogeneous semisimple module. O

As noted in [4], a commutative ring is fully prime if and only if it is a field.
The following corollary shows, in particular, that an analogous result holds for
finitely generated modules over a commutative Noetherian ring: in this case
rM is a fully prime module if and only if anng(M) is a maximal ideal and M
is a finite dimensional vector space over R/ anng(M).

It is proved in [2] that if R is finitely generated as a module over a Noetherian
subring S of its center, then any finitely generated module satisfies Gabriel’s
condition H. For the reader’s convenience, we include an outline of the proof.
Suppose that g M is finitely generated, and gV is a finitely M-generated mod-
ule. Then ¢N is Noetherian since g R is Noetherian, and it can be shown that
Homp (M, N) is a finitely generated S-module. A brief argument then shows
that N is finitely M-annihilated.

Corollary 4.5. Let R be a ring that is finitely generated as a module over a
Noetherian subring of its center, and let M be a finitely generated R-module.
Then M is a fully prime module if and only if anng (M) is a mazimal ideal and
M is a finitely generated homogeneous semisimple module over R/ anng(M).

Proof. Since M satisfies condition H by the result from [2] quoted above, it
follows from Theorem 4.4 that M is a homogeneous semisimple module. There-
fore R/ anng(M) is a simple Artinian ring, since R satisfies condition H, and
so anng (M) is a maximal ideal of R. The converse is clear. O

The following example shows that in Corollary 4.5 the hypothesis that M is
finitely generated is necessary.

Example 4.6. Over the ring of integers Z, consider the group Q of rational
numbers. Given nonzero elements a,b € Q, it is easy to construct an auto-
morphism of Q that maps a to b. It follows that Q has no proper nontrivial
fully invariant submodules, and so Q is a fully prime Z-module that is not
semisimple.

Definition. A proper fully invariant submodule P of M is said to be primitive
if P = ann)(S) for some simple module S.

Proposition 4.7. Let M be a quasi-projective Noetherian module. If M is
a fully prime module, then every proper fully invariant submodule of M is an
intersection of primitive submodules.

Proof. Since M is Noetherian and fully prime, as in the proof of Theorem 4.4
we have J(M) = 0. That is, 0 is an intersection of primitive submodules.
Given a fully invariant submodule N of M, since M/N is Noetherian and
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quasi-projective, we have J(M/N) = 0, and so M/N is semiprimitive. This
implies that NV is an intersection of primitive submodules of M. ([

Corollary 4.8. Let R be a left Noetherian ring. If R is fully prime, then every
ideal of R is semiprimitive.

We note that, in particular, any left Noetherian fully prime ring is a Jacobson
ring (i.e., every prime ideal of R is semiprimitive).
5. Endomorphism rings, and Morita invariance

Proposition 5.1. Let F: R—-Mod — S-Mod be a category equivalence, and
let M be an R-module. If N,L are fully invariant submodules of M, then
F(NyL) = F(N)pon F(L).
Proof. The equivalence F' induces a natural isomorphism
Homg(F(M), F(L)) =2 Homg(M, L) .
Since F' preserves direct sums and images, we have the following calculation:
F(N)pnF(L) = Y {g(F(N)) | g € Homg(F (M), F(L))}

— S {F()(F(N)) | f € Homg(M, L)}

— Y {F(f(N)) | f € Homp(M, L)}

— F(S{f(N) | f € Homp(M, L)})

=F(NmuL),
which completes the proof. O
Corollary 5.2. Let F': R—-Mod — S—Mod be an equivalence, and let M be a

left R-module. If P is a prime (semiprime) submodule of M, then F(P) is a
prime (semiprime) submodule of F(M).

Proposition 5.3. Let F' : R—-Mod — S-Mod be an equivalence, and let M
be an R-module. If M is a fully prime (fully semiprime) left R-module, then
F(M) is a fully prime (fully semiprime) left S-module.

Proof. There is a bijection between the fully invariant submodules of M and
the fully invariant submodules of F'(M). It follows from Corollary 5.2 that if
M is a fully prime or fully semiprime module, then so is F'(M). ([

Theorem 5.4. Let M be a finitely generated quasi-projective module. If M is
a fully semiprime module, then S = Endg(M) is a fully semiprime ring.

Proof. Since M is finitely generated and quasi-projective, Hompg(M,IM) = I
for every ideal of S by [15, 18.4]. Hence

(IM)py(IM) = Homg(M,IM)(IM) = I?M
for any ideal I of S. This implies that
I = Hompg(M, IM) = Homg (M, (IM)y(IM)) = Homp(M, I?M) = I?
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for any ideal of S. O

Corollary 5.5. Let R be a fully semiprime ring. Then M,(R) is a fully
semiprime ring for any n > 0.

Proposition 5.6. Let e be an idempotent element of a ring R. If R is a fully
semiprime ring, then so is eRe.

Proof. Let e € R be idempotent, and let I be an ideal of eRe. By [11, 21.11],
we have I = e(RIR)e. Therefore

I =¢(RIR)e = ¢(RIRRIR)e = ¢(RI*R)e = I?,
completing the proof. (I

Corollary 5.7. The property of being a fully semiprime ring is a Morita in-
variant property.

We note that in [4, Theorem 2.1, Theorem 2.3] it is proved that if R is a
fully prime ring, then M, (R) is a fully prime ring for all n > 0, and if e € R is
an idempotent element, then eRe is fully prime.

Theorem 5.8. Let R be a fully prime ring, and let P be a finitely generated
projective R-module. Then Endg(P) is a fully prime ring.

Proof. There is a positive integer n such that R™ = P & Q. It follows that

~ | Endgr(P) Homp (@, P)
~ | Homg(P,Q) Endgr(Q)

Then there exists an idempotent e € M, (R) such that eM,,(R)e = Endgr(P).
Therefore Endg(P) is a fully prime ring by [4, Theorem 2.1, Theorem 2.3]. O

My (R)

Theorem 5.9. Let M be an R-module and let S = Endr(M). Suppose that
every fully invariant submodule of M 1is M-generated. If S is a fully prime
ring, then M is a fully prime module.

Proof. Let N be a proper fully invariant submodule of M. By hypothesis,
Homp (M, N) is a prime ideal of S. It follows from [5, proposition 1.8] that N
is a prime submodule. Thus M is fully prime. O

Example 5.10. Let R be a fully prime ring, and let g P be a finitely generated
projective generator. Then every submodule of P is P-generated, and so it
follows from Theorem 5.9 that P is a fully prime module, because Endg(P) is
a fully prime ring by Theorem 5.8.

On the other hand, it need not be true that every finitely generated left
R-module is fully prime. In fact, if R is a simple ring with two non-isomorphic
simple modules S; and S5, then R is a fully prime ring but S; & S5 is not
fully prime since the fully invariant submodules S; @ (0) and (0) & Sy are
incomparable.
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The following example shows that if M does not generate its fully invariant
submodules, then the conclusion of Theorem 5.9 may not be true.

Example 5.11. Consider the ring R = [202 %2 ] . We have the following decom-
position of R, as left a R-module:

[ Zy 0 0 Z
welvalel )
Set M = [8 %z |. Then Endg(M) = Zy. Hence Endg(M) is a fully prime ring.

On the other hand,
ERE
0 0 J,L0 O

Thus M is not fully prime.
The following proposition is a partial converse of Theorem 5.9.

Theorem 5.12. Let M be a finitely generated quasi-projective module. If M
is fully prime, then S = Endgr(M) is a fully prime ring.

Proof. Since M is finitely generated and quasi-projective, it is shown in [15,
18.4] that Homp(M,IM) = I for every ideal of S. Let I and J be ideals of S.
Then

(JM)pr(IM) = Homp (M, IM)JM = IJM .

We claim that if N is a prime submodule of M, then Hompg(M,N) is a
prime ideal of S. Let I and J be ideals of S such that IJ C Hompg(M,N).
Then IJM C Homp(M,N)M C N. Since (JM)py(IM) = IJM, either
IM C N or JM C N. Therefore J = Homp(M,JM) C Homp(M,N) or
I = Homp(M,IM) C Homg(M, N), proving the claim. Given an ideal I of S,
it follows that IM is a prime submodule of M, and hence I = Homp (M, IM)
is a prime ideal of S. O

Corollary 5.13 ([4, Theorem 2.1]). Let R be a fully prime ring. Then M,(R)
is a fully prime ring for any n > 0.

Proof. By Proposition 4.3, R" is a fully prime module. It follows from Theo-
rem 5.12 that Endg(R™) = M, (R) is a fully prime ring. O
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