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FULLY PRIME MODULES AND FULLY SEMIPRIME

MODULES

John A. Beachy and Mauricio Medina-Bárcenas

Abstract. Fully prime rings (in which every proper ideal is prime) have
been studied by Blair and Tsutsui, and fully semiprime rings (in which

every proper ideal is semiprime) have been studied by Courter. For a

given module M , we introduce the notions of a fully prime module and
a fully semiprime module, and extend certain results of Blair, Tsutsui,

and Courter to the category subgenerated by M . We also consider the

relationship between the conditions (1) M is a fully prime (semiprime)
module, and (2) the endomorphism ring of M is a fully prime (semiprime)

ring.

1. Introduction

It will be assumed throughout that R is an associative ring with identity,
and that M is a fixed nonzero left R-module. A module X in R–Mod, the
category of unital left R-modules, is said to be M -generated if there exists an
R-epimorphism from a direct sum of copies of M onto X. The category σ[M ]
of modules subgenerated by M is defined to be the full subcategory of R–Mod
that contains all modules RX such that X is isomorphic to a submodule of
an M -generated module. The reader is referred to [9] and [16] for results on
the category σ[M ]. It is an abelian category, and in R–Mod it is closed under
formation of homomorphic images, submodules, and direct sums.

The results in this paper concern the analog in σ[M ] of the notion of a prime
ideal of the ring R. We recall that a proper ideal P of R is said to be prime if
AB ⊆ P implies A ⊆ P or B ⊆ P for all ideals A,B of R, and it is said to be
semiprime if A2 ⊆ P implies A ⊆ P for all ideals A of R, or, equivalently, if P
is an intersection of prime ideals of R.

A subfunctor τ of the identity on σ[M ] is called a preradical of σ[M ]; it is
called a radical if τ(X/τ(X)) = (0) for all X in σ[M ]. If ρ and τ are preradicals
of σ[M ] such that ρ(X) ⊆ τ(X) for all modules RX, then the notation ρ ≤ τ
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is used. If N is any submodule of M , we define the preradicals trMN and rejMN
as follows:

trMN (X) =
∑
{f(N) | f ∈ HomR(M,X)}

and

rejMN (X) = ∩
{
f−1(N) | f ∈ HomR(X,M)

}
for all X in R–Mod. We note that if N is a fully invariant submodule of M ,
then trMN and rejMN are defined by the property that trMN (M) = N = rejMN (M),

and if τ is any preradical with τ(M) = N , then trMN ≤ τ ≤ rejMN .
For submodules N,L of M , we define a product as follows:

NML = trMN (L) =
∑
{f(N) | f ∈ HomR(M,L)}.

A proper submodule Q of M is called a prime submodule if Q is fully invariant
in M , and NML ⊆ Q implies N ⊆ Q or L ⊆ Q for all fully invariant submodules
N,L of M . Similarly, Q is called a semiprime submodule if Q is fully invariant
in M , and NMN ⊆ Q implies N ⊆ Q for all fully invariant submodules N of
M . The reader is referred to [3], [7], [13] and [14] for general properties of the
product defined above and of prime and semiprime modules.

Finally, a submodule N of M is said to be idempotent if NMN = N .
In the first section of the paper, we show that if Q⊆M is a prime (resp.

semiprime) submodule, then annR(M/Q) is a prime (resp. semiprime) ideal of
R. We then give the definition of a fully prime (fully semiprime) module, and
some preliminary lemmas.

In [8], Courter studies rings in which every proper ideal is semiprime. He
gives sixteen equivalent conditions, including the statement that every proper
ideal of a ring is semiprime if and only if every ideal of the ring is idempotent.
He also notes that this condition holds in any von Neumann regular ring. In
fact, [10, Corollary 1.18] states that the ring R is von Neumann regular if and
only if every ideal of R is idempotent and R/P is von Neumann regular for all
prime ideals P of R.

In Section 3, we show that twelve of Courter’s characterizations can be ex-
tended to the category σ[M ]. Our most basic example of a module all of whose
proper fully invariant submodules are semiprime is that of a semisimple mod-
ule. In fact, we show that for a left Artinian ring, these are the only examples.
More generally, regular modules provide additional examples. We show that if
every proper submodule of M is semiprime, then the same condition holds for
any direct sum M (I) of copies of M .

In [4], Blair and Tsutsui studied rings in which every proper ideal is prime.
They showed that every proper ideal of R is prime if and only if the ideals of R
are totally ordered and idempotent. They note that in the commutative case
the only such rings are fields.

In Section 4, we extend the above characterization to σ[M ]. Using Gabriel’s
condition H for the module M , we show that if M is a fully prime finitely gener-
ated module over a commutative Noetherian ring, then annR(M) is a maximal
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ideal of R, and M is a finite dimensional vector space over R/ annR(M). In
general, the most basic example of a fully prime module is a homogeneous
semisimple module, and a finitely generated module over a left Artinian ring
is fully prime if and only if it is semisimple and homogeneous.

In Section 5, we show that the notion of a prime (semiprime) submodule is
Morita invariant, and then the notion of a fully prime (fully semiprime) module
is also a Morita invariant. Theorem 5.8 shows that if R is a fully prime ring and
P is a finitely generated projective R-module, then EndR(P ) is a fully prime
ring. If M is a finitely generated quasi-projective module, then Theorem 5.12
(Theorem 5.4) shows that if M is a fully prime (fully semiprime) module, then
EndR(M) is a fully prime (fully semiprime) ring. In Theorem 5.9 we give a
partial converse: if every fully invariant submodule of M is M -generated and
EndR(M) is a fully prime ring, then M is a fully prime module.

2. Definitions and preliminary results

Since a left ideal of R is fully invariant as a submodule if and only if it is
an ideal of R, and the product IRJ of two ideals I, J of R is the usual product
IJ , it follows that the prime (resp. semiprime) submodules of RR are just the
prime (resp. semiprime) ideals of R. We also note the following connection
between prime submodules and prime ideals.

Proposition 2.1. Let M be a left R-module.
(a) If Q is a prime submodule of M , then annR(M/Q) is a prime ideal of

R.
(b) If Q is a semiprime submodule of M , then annR(M/Q) is a semiprime

ideal of R.

Proof. (a) Let A,B be ideals of R with AB ⊆ annR(M/Q). Then AM and
BM are fully invariant submodules of M , so we have

(AM)M (BM) =
∑
{f(AM) | f ∈ HomR(M,BM)}

= A (
∑
{f(M) | f ∈ HomR(M,BM)})

⊆ A(BM) ⊆ Q.
Since Q is a prime submodule, we have either AM ⊆ Q or BM ⊆ Q. Thus
either A ⊆ annR(M/Q) or B ⊆ annR(M/Q), showing that annR(M/Q) is a
prime ideal.

(b) The proof is only a minor modification of the one given for part (a). �

Corollary 2.2. Let M be a left module over a left Artinian ring R.
(a) If Q is a prime submodule of M , then M/Q is semisimple and homoge-

neous.
(b) If Q is a semiprime submodule of M , then M/Q is semisimple.

Proof. (b) If Q is a semiprime submodule of M , then annR(M/Q) is a semi-
prime ideal of R by Proposition 2.1(b). Since M/Q is a module over the
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semisimple Artinian ring R/ annR(M/Q), it follows that M/Q is a semisimple
module.

(a) If Q is a prime submodule of M , then it follows from the proof of part
(b) that M/Q is a semisimple module. Since annR(M/Q) is a prime ideal of
R, the ring R/ annR(M/Q) has only one isomorphism class of simple modules,
so M/Q is homogeneous. �

Definition. The module RM is said to be a fully prime module (resp. fully
semiprime module) if every proper fully invariant submodule N ⊆M is a prime
(resp. semiprime) submodule.

The ring R is called fully prime (resp. fully semiprime) if RR is a fully prime
(resp. semiprime) module.

The reader is cautioned that these definitions are intended to make sense in
the category σ[M ]. In the literature, there are several definitions of a prime sub-
module that seem appropriate in the category R–Mod. Of course, a fully prime
module (resp. fully semiprime module) is a prime (resp. semiprime) module (in
the sense of our definition), and it is a module over a prime (resp. semiprime)
ring by Proposition 2.1.

Example 2.3. It follows immediately from Corollary 2.2 that any semiprime
module over a left Artinian ring is fully semiprime. Similarly, any prime module
over a left Artinian ring is fully prime.

Before investigating fully semiprime modules, we need some preliminary
results.

Lemma 2.4. Let N be a fully invariant submodule of RM . If every fully invari-
ant submodule of M is idempotent in M , then every fully invariant submodule
of N is idempotent in N .

Proof. Assume that every fully invariant submodule of M is idempotent, and
let L ⊆ N be a fully invariant submodule of N . Then L is easily seen to be
fully invariant in M , so by assumption we have LML = L, but we must show
that LNL = L. By the definition of LML, for each element y ∈ L there exist

fi ∈ HomR(M,L) and xi ∈ L, for 1 ≤ i ≤ k, such that y =
∑k

i=1 fi(xi). For
1 ≤ i ≤ k, let gi be the restriction of fi to N . Since L ⊆ N , we have gi(xi) =

fi(xi) for 1 ≤ i ≤ k, and thus y =
∑k

i=1 gi(xi), showing that L ⊆ LNL. �

Remark 2.5. The proof of Lemma 2.4 can easily be modified to show that if
every submodule of M is idempotent, then the same is true for any submodule
N ⊆M .

We give the following definition to simplify our earlier notation.

Definition. Let M be a left R-module, and let N,L be submodules of M . We
use the following notation:

NL−1 = {m ∈M | f(m) ∈ N, ∀f ∈ HomR(M,L)} .



FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES 1181

Since NL−1 = rejLN∩L(M), it follows immediately that NL−1 is a fully
invariant submodule of M .

Lemma 2.6. The following conditions hold for submodules N,L of RM :
(a)

(
NL−1

)
M
L ⊆ N ;

(b) if K ⊆M is any submodule such that KML ⊆ N , then K ⊆ NL−1;
(c) (N ∩ L)L−1 = NL−1;
(d) N ⊆ (NML)L−1.

If N is a fully invariant submodule of M , then the following condition holds:
(e) N ⊆ NL−1.

Proof. (a) This follows immediately from the definition of NL−1.
(b) If KML ⊆ N , then f(K) ⊆ N for all f ∈ HomR(M,L), and thus

K ⊆ NL−1.
(c) This follows immediately from the definition of (N ∩ L)L−1, since for

f ∈ HomR(M,L) we have f(m) ∈ N ∩ L if and only if f(m) ∈ N .
(d) For any homomorphism g ∈ HomR(M,L), we have

g(N) ⊆
∑
{f(N) | f ∈ HomR(M,L)} = NML ,

and so it follows from the definition of (NML)L−1 that N ⊆ (NML)L−1.
(e) Since N is a fully invariant submodule, we have NML ⊆ N ∩ L, so it

follows from part (b) that N ⊆ NL−1. �

Lemma 2.7. The equality ((NML)L−1)ML = NML holds for all submodules
N,L of M .

Proof. Since NML ⊆ L, we have ((NML)L−1)ML ⊆ (NML) ∩ L = NML by
part (a) of Lemma 2.6. On the other hand, NML ⊆ ((NML)L−1)ML since
N ⊆ (NML)L−1 by part (d) of Lemma 2.6. �

Definition. For submodules N,L of RM , let

N−1L =
∑
{K | K ⊆M and NMK = NML} ,

where K is any submodule of M .

Lemma 2.8. If RM is projective in σ[M ], then NM

(
N−1L

)
= NML.

Proof. Since M is projective in σ[M ], Lemma 2.1 of [6] shows that

NM

(∑
{K | K ⊆M and NMK = NML}

)
=
∑
NM ({K | K ⊆M and NMK = NML}) ,

and so by definition NM

(
N−1L

)
= NML. �
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3. Fully semiprime modules

With the preliminary lemmas in hand, we are now able to extend results of
Courter [8] to the category σ[M ].

Theorem 3.1. The following conditions are equivalent for the module RM :
(1) M is a fully semiprime module;
(2) NML = N ∩ L for all fully invariant submodules N,L of M ;
(3)

(
NL−1

)
∩ L = N ∩ L for all fully invariant submodules N,L of M ;

(4)
(
NL−1

)
∩K = N ∩K for all fully invariant submodules N,L,K of M

such that L ⊇ K;
(5) every fully invariant submodule of M is idempotent.

Proof. (1) ⇒ (2): If N,L are fully invariant submodules of M , then NML is
fully invariant, and NML ⊆ N ∩ L. If NML = M , then N ∩ L = M . Thus we
may assume that NML ⊂ M , so by assumption it is a semiprime submodule.
Then

(N ∩ L)M (N ∩ L) ⊆ NML

implies that N ∩ L ⊆ NML.
(2) ⇒ (3): Let N,L be fully invariant submodules of M . Since NL−1 is

fully invariant in M , we have
(
NL−1

)
∩L ⊆

(
NL−1

)
M
L by the condition (2).

Then
(
NL−1

)
M
L ⊆ L always holds, and

(
NL−1

)
M
L ⊆ N by Lemma 2.6(a).

To show the reverse inclusion, note that since N is fully invariant in M we
have N ⊆ NL−1 by Lemma 2.6(e), and so N ∩ L ⊆

(
NL−1

)
∩ L.

(3)⇒ (4): Let N,L,K be fully invariant submodules of M such that L ⊇ K.
Then K = L ∩K, and so(

NL−1
)
∩K =

(
NL−1

)
∩ (L ∩K) =

((
NL−1

)
∩ L
)
∩K)

= (N ∩ L) ∩K = N ∩ (L ∩K) = N ∩K.

(4) ⇒ (5): Let L be a fully invariant submodule of M . By Lemma 2.6(d)
we have L ⊆ (LML)L−1, and so L ⊆

(
(LML)L−1

)
∩ L. Assuming the con-

dition (4) for N = LML and K = L, we have L ⊆
(
(LML)L−1

)
∩ L =

(LML) ∩ L = LML, and it follows that L is an idempotent submodule.
(5)⇒ (1): Assume that every fully invariant submodule of M is idempotent,

and let N be a proper fully invariant submodule of M . If L is a fully invariant
submodule of M such that LML ⊆ N , then L ⊆ N since L = LML. �

Corollary 3.2. The following conditions hold for any fully semiprime module

RM :
(a) NML = LMN for all fully invariant submodules N,L ⊆M ;
(b) every fully invariant submodule of M is M -generated;
(c) every fully invariant submodule of M is a fully semiprime module.

Proof. (a) This follows immediately from Theorem 3.1(2).
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(b) If N is a fully invariant submodule of M , then by part (a) we have
NMM = MMN . Since N ⊆ NMM , we have N = MMN , which shows that N
is M -generated.

(c) This follows immediately from Theorem 3.1(5) and Lemma 2.4. �

If N is a direct summand of RM , then the natural projection maps M onto
N , and so it is clear that N is an idempotent submodule of M . Thus every
proper submodule of a semisimple module is idempotent, and so the semisimple
R-modules provide our most basic examples of fully semiprime modules. For a
left Artinian ring, it follows from Corollary 2.2 that they are the only examples.

Example 3.3. The module RM is said to be regular if every cyclic submodule
of M is a direct summand of M . It follows from [12, Proposition 2.2] that
every regular module is fully idempotent (in the sense that NMN = N for
every submodule N). Thus the class of regular modules provides examples
of fully semiprime modules. In fact, [12, Corollary 2.4] shows that if M is a
nonzero finitely generated quasi-projective module, then M is regular if and
only if it is a fully semiprime module and every prime factor module of M is
regular.

Given any module M and any indexing set I, it is known that every fully
invariant submodule of M (I) has the form N (I) for some fully invariant sub-
module N of M . This implies that the lattice of fully invariant submodules of
M is isomorphic to the lattice of fully invariant submodules of M (I).

Proposition 3.4. Let M be a fully semiprime module. Then M (I) is fully
semiprime for any index set I.

Proof. Let ηi : M → M (I) be the canonical inclusions. Let N be a fully
invariant submodule ofM (I). SinceN is fully invariant, there is a fully invariant
submodule L of M such that N = L(I). Let (`i)i∈I ∈ N = L(I). By hypothesis,
LML = L. Then, for each i ∈ I

`i =
∑ki

j=1 fij(aij)

with fij ∈ HomR(M,L) and aij ∈ L. For each 1 ≤ j ≤ k, there exists a unique

homomorphism ⊕i∈Ifij : M (I) → L(I). Let k = max{ki | i ∈ I}. Adding zeros
as needed, we have

(`i)i∈I =
(∑ki

j=1 fij(aij)
)

=
∑k

j=1 (fij(aij))i∈I

=
∑k

j=1 (⊕i∈Ifij) (aij)i∈I ∈
(
L(I)

)
M

(
L(I)

)
.

Thus N = NM(I)N . By Theorem 3.1(6), M (I) is fully semiprime. �

Theorem 2.7 of [8] implies that the direct product of two fully semiprime
rings is fully semiprime.

Proposition 3.5. Let RM and RN be fully semiprime modules. Then M ⊕N
is a fully semiprime module.
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Proof. If Q is any fully invariant submodule of M⊕N , then it is invariant under
the projection mappings onto M ⊕ (0) and (0)⊕N . Therefore Q = K ⊕ L for
K = {x ∈ M | (x, 0) ∈ Q} and L = {y ∈ N | (0, y) ∈ Q}, and K and L are
fully invariant submodules of M and N , respectively. Then

QM⊕NQ =
∑
{f(K ⊕ L) | f ∈ HomR(M ⊕N,K ⊕ L)}

⊇
∑
{f(K) | f ∈ HomR(M,K)} ⊕

∑
{g(L) | g ∈ HomR(N,L)}

= (KMK)⊕ (LNL) .

Thus Q is an idempotent submodule since by hypothesis K and L are idem-
potent submodules of M and N , respectively. It follows from Theorem 3.1(5)
that M ⊕N is a fully semiprime module. �

In [8], Courter gives sixteen equivalent conditions for a ring to be fully
semiprime, labeled A - P. Our Theorem 3.1 gives the analogs in σ[M ] of con-
ditions A, C, E, F and H. We have listed the analog of B as Corollary 3.2(c).
The analogs of conditions D and G, which appear to require the assumption
that M is projective in σ[M ], are given in Proposition 3.7. Courter’s conditions
I - L involve right ideals, and in σ[M ] we have no analog of a right ideal. In
Proposition 3.8, we give a condition for R-submodules of M similar to Courter’s
condition I, but it is much stronger than the other conditions, since it is equiv-
alent to the condition that every submodule of M is idempotent. Courter’s
conditions M - P involve left ideals, and the analogs of these conditions are
given in the following proposition.

Proposition 3.6. The following conditions are equivalent for the module RM :
(1) M is a fully semiprime module;
(6) XML ⊇ X∩L for all submodules X,L of M such that L is fully invariant

in M ;
(7) XML ⊇ X for all submodules X ⊆ L of M such that L is fully invariant

in M ;
(8)

(
XL−1

)
∩ L ⊆ X ∩ L for all submodules X,L of M such that L is fully

invariant in M ;
(9)

(
XL−1

)
∩ L ⊆ X for all submodules X ⊆ L of M such that L is fully

invariant in M .

Proof. (1)⇒ (6): Let X,L be submodules of M , such that L is a fully invariant
submodule of M . We have X ∩ L ⊆

(
(XML)L−1

)
∩ L since X ⊆ (XML)L−1

by Lemma 2.6(d). Note that XML is a fully invariant submodule of L, and
so it is a fully invariant submodule of M . Since M is a fully prime module,
by Theorem 3.1(3) we have

(
(XML)L−1

)
∩ L = (XML) ∩ L = XML, and it

follows that X ∩ L ⊆ XML.
(6) ⇒ (7): Since X ∩ L = X, it is clear that the condition (7) is a special

case of the condition (6).
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(7) ⇒ (1): Given any fully invariant submodule L of M , that L ⊆ LML
follows immediately upon taking X = L in the condition (7). Thus the condi-
tion (5) of Theorem 3.1 holds, and M is a fully prime module.

(6) ⇒ (8): Since Lemma 2.6(a) holds for all submodules, the first part of
the proof that (2) implies (3) in Theorem 3.1 remains valid, showing that (6)
implies (8).

(8) ⇒ (1): It follows from Lemma 2.6(e) that X ∩ L ⊆
(
XL−1

)
∩ L, and so

condition (3) of Theorem 3.1 is a special case of the condition (8).
(8) ⇔ (9): If the condition (8) holds and X ∩L = X, then the condition (9)

holds. On the other hand, if the condition (9) holds, then for any submodule
X we have

(
XL−1

)
∩ L =

(
(X ∩ L)L−1

)
∩ L ⊆ X ∩ L by Lemma 2.6(d). �

Proposition 3.7. If M is projective in σ[M ], then the following conditions
are equivalent for the module RM :

(1) M is a fully semiprime module;
(10) N ∩

(
N−1L

)
= N ∩ L for all fully invariant submodules N,L of M ;

(11) K ∩
(
N−1L

)
= K ∩ L for all fully invariant submodules K,N,L of M

such that N ⊇ K.

Proof. (1)⇒ (10): It is clear from the definition of N−1L that L ⊆ N−1L, and
so we always have N∩L ⊆ N∩

(
N−1L

)
. Lemma 2.8 shows that NM

(
N−1L

)
=

NML, since M is projective in σ[M ]. Thus

NML = NM

(
N−1L

)
⊆ N ∩

(
N−1L

)
.

Since M is fully semiprime, by the condition (2) of Theorem 3.1, we have
N ∩ L = NML, and therefore N ∩ L ⊆ N ∩

(
N−1L

)
.

(10) ⇒ (1): Let N,L be fully invariant submodules of M , and assume that
the condition (10) holds. Since N is fully invariant, we have NML ⊆ N ∩ L.
Since NML is a fully invariant submodule of M , we can substitute NML for L,
and so

N ∩
(
N−1 (NML)

)
= N ∩ (NML) = NML .

It follows from the definition that L ⊆ N−1 (NML), and thus

N ∩ L ⊆ N ∩
(
N−1 (NML)

)
= NML ,

so the condition (2) of Theorem 3.1 holds.
(10)⇔ (11): It is clear that (10) is a special case of (11), and the proof that

(10) implies (11) is similar to the proof that (3) implies (4) in Theorem 3.1. �

Proposition 3.8. For the module RM , we have NMX ⊇ N ∩X for all sub-
modules N,X of M such that N is fully invariant in M if and only if every
submodule of M is idempotent.

Proof. Let X be any submodule of M , and suppose that NMX ⊇ N ∩X for
all submodules N of M such that N is fully invariant in M . Then XMX =
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(XMX)X−1

)
M
X by Lemma 2.7, and (XMX)X−1 ⊇ X by Lemma 2.6(d).

Since (XMX)X−1 is fully invariant in M , by assumption we have

XMX =
(
(XMX)X−1

)
M
X ⊇

(
(XMX)X−1

)
∩X ⊇ X ,

and so X is an idempotent submodule of M .
Conversely, if every submodule of M is idempotent, and X,Y are any sub-

modules of M , then X ∩ Y = (X ∩ Y )M (X ∩ Y ) ⊆ XMY , since X ∩ Y ⊆ X
and X ∩ Y ⊆ Y . �

4. Fully prime modules

It RM is semisimple and homogeneous, it is clear that its only fully in-
variant submodules are M and (0). This is the most elementary fully prime
module, and following the characterization of fully prime modules in the next
theorem we will investigate conditions under which a fully prime module must
be semisimple and homogeneous.

Theorem 4.1. The module RM is a fully prime module if and only if the fully
invariant submodules of M are idempotent and totally ordered.

Proof. First assume that M is a fully prime module. Then in particular it is a
fully semiprime module, and so every fully invariant submodule of M is idem-
potent by Theorem 3.1. Next, let N,L be proper fully invariant submodules
of M . Then N ∩L is also fully invariant, and by assumption it is a prime sub-
module. Since NML ⊆ N ∩ L, it follows that either N ⊆ N ∩ L, and therefore
N ⊆ L, or L ⊆ N ∩ L, which implies that L ⊆ N .

To show the converse, assume that the fully invariant submodules of M are
totally ordered and idempotent, and letQ be a proper fully invariant submodule
of M . Suppose that N,L are fully invariant submodules of M such that NML ⊆
Q. Since the fully invariant submodules are totally ordered, we have either
N ⊆ L or L ⊆ N . In the first case, NMN ⊆ NML, so N = NMN ⊆ Q since N
is idempotent. In the second case, we LML ⊆ NML, so L = LML ⊆ Q since L
is idempotent. �

Proposition 4.2. Let M be a nonzero fully prime module, and let N be a fully
invariant submodule of M . Then

(a) N is a fully prime module;
(b) if M is a quasi-projective module, then M/N is a fully prime module.

Proof. (a) By Theorem 4.1 the fully invariant submodules of M are totally
ordered and idempotent. Since each fully invariant submodule of N is also fully
invariant in M , it follows immediately that the fully invariant submodules of
N are totally ordered, and they are idempotent by Lemma 2.4.

(b) Let L/N be a proper fully invariant submodule of M/N . By [13, Lemma
17], L is fully invariant in M and so M/L ∼= (M/N)/(L/N) is a prime module.
Furthermore, M/N is quasi-projective since M is quasi-projective. It follows
from [13, Proposition 18] that L/N is a prime submodule of M/N . �
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Proposition 4.3. Let M be a fully prime module. Then M (I) is a fully prime
module for any index set I.

Proof. Since M is fully prime, the fully invariant submodules of M are totally
ordered. Therefore, the fully invariant submodules of M (I) are totally ordered.
It follows from Proposition 3.4 that every fully invariant submodule of M (I) is
idempotent. Thus M (I) is fully prime by Theorem 4.1. �

It is shown in [4] that a left fully bounded left Noetherian ring that is fully
prime is simple Artinian, generalizing the fact that a fully prime commutative
ring must be a field. We recall that a left Noetherian ring is left fully bounded
if and only if every finitely generated left module is finitely annihilated. To
extend this notion to σ[M ], the annihilator in M of a module X is defined as
follows:

annM (X) = rejX(0)(M) = ∩{ker(f) | f ∈ HomR(M,X)} .

We say that RX is finitely M -generated if there exists an epimorphism from a
finite direct sum of copies of M onto X, and that RX is finitely M -annihilated
if there exists an embedding of M/ annM (X) into a finite direct sum of copies
of X. Then M is said to satisfy Gabriel’s condition H if every finitely M -
generated module is finitely M -annihilated [1].

The Jacobson radical J(M) of the module M is defined to be the intersection
of the maximal submodules of M . If C is the class of simple modules in σ[M ],
then J(M) = radC(M), where radC(X) is the radical defined as the intersection
of the kernels of all homomorphisms from X into a module in C.

Theorem 4.4. Let M be a nonzero Noetherian module that satisfies Gabriel’s
condition H. If M is fully prime, then M is a homogeneous semisimple module.

Proof. First suppose that J(M) 6= (0). Then since M is Noetherian, J(M) is
finitely generated, and so it has a maximal submodule. For f ∈ HomR(M,J(M))

we therefore have

f(J(M)) = f(radC(J(M)) ⊆ radC(J(M)) ⊂ J(M) .

Since J(M) is a fully invariant submodule ofM , this contradicts the assumption
that J(M) is an idempotent submodule.

SinceM is Noetherian, there exists a maximal submoduleM1 ⊂M , and then
annM (M/M1) is a fully invariant submodule of M . Since M satisfies Gabriel’s
condition H and M/M1 is finitely M -generated, it follows that M/M1 is finitely
M -annihilated, so there exists an embedding of M/ annM (M/M1) into a direct
sum (M/M1)n of copies of M/M1. It follows that M/ annM (M/M1) is a ho-
mogeneous semisimple module.

Suppose that M2 ⊂M is a maximal submodule of M such that M/M2 is not
isomorphic to M/M1. Then annM (M/M2) is a fully invariant submodule of
M , so by assumption either annM (M/M2) ⊆ annM (M/M1) or annM (M/M1) ⊆
annM (M/M2). If annM (M/M2) ⊆ annM (M/M1), then the projection mapping
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is a nonzero homomorphism from M/ annM (M/M2) onto M/ annM (M/M1).
This is a contradiction since both modules are homogeneous semisimple and
M/M2 is not isomorphic to M/M1. We conclude that the intersection of all
maximal submodules of M is annM (M/M1), so J(M) = annM (M/M1), and
thus M = M/J(M) is a homogeneous semisimple module. �

As noted in [4], a commutative ring is fully prime if and only if it is a field.
The following corollary shows, in particular, that an analogous result holds for
finitely generated modules over a commutative Noetherian ring: in this case

RM is a fully prime module if and only if annR(M) is a maximal ideal and M
is a finite dimensional vector space over R/ annR(M).

It is proved in [2] that if R is finitely generated as a module over a Noetherian
subring S of its center, then any finitely generated module satisfies Gabriel’s
condition H. For the reader’s convenience, we include an outline of the proof.
Suppose that RM is finitely generated, and RN is a finitely M -generated mod-
ule. Then SN is Noetherian since SR is Noetherian, and it can be shown that
HomR(M,N) is a finitely generated S-module. A brief argument then shows
that N is finitely M -annihilated.

Corollary 4.5. Let R be a ring that is finitely generated as a module over a
Noetherian subring of its center, and let M be a finitely generated R-module.
Then M is a fully prime module if and only if annR(M) is a maximal ideal and
M is a finitely generated homogeneous semisimple module over R/ annR(M).

Proof. Since M satisfies condition H by the result from [2] quoted above, it
follows from Theorem 4.4 that M is a homogeneous semisimple module. There-
fore R/ annR(M) is a simple Artinian ring, since R satisfies condition H, and
so annR(M) is a maximal ideal of R. The converse is clear. �

The following example shows that in Corollary 4.5 the hypothesis that M is
finitely generated is necessary.

Example 4.6. Over the ring of integers Z, consider the group Q of rational
numbers. Given nonzero elements a, b ∈ Q, it is easy to construct an auto-
morphism of Q that maps a to b. It follows that Q has no proper nontrivial
fully invariant submodules, and so Q is a fully prime Z-module that is not
semisimple.

Definition. A proper fully invariant submodule P of M is said to be primitive
if P = annM (S) for some simple module S.

Proposition 4.7. Let M be a quasi-projective Noetherian module. If M is
a fully prime module, then every proper fully invariant submodule of M is an
intersection of primitive submodules.

Proof. Since M is Noetherian and fully prime, as in the proof of Theorem 4.4
we have J(M) = 0. That is, 0 is an intersection of primitive submodules.
Given a fully invariant submodule N of M , since M/N is Noetherian and
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quasi-projective, we have J(M/N) = 0, and so M/N is semiprimitive. This
implies that N is an intersection of primitive submodules of M . �

Corollary 4.8. Let R be a left Noetherian ring. If R is fully prime, then every
ideal of R is semiprimitive.

We note that, in particular, any left Noetherian fully prime ring is a Jacobson
ring (i.e., every prime ideal of R is semiprimitive).

5. Endomorphism rings, and Morita invariance

Proposition 5.1. Let F : R–Mod → S–Mod be a category equivalence, and
let M be an R-module. If N,L are fully invariant submodules of M , then
F (NML) = F (N)F (M)F (L).

Proof. The equivalence F induces a natural isomorphism

HomS(F (M), F (L)) ∼= HomR(M,L) .

Since F preserves direct sums and images, we have the following calculation:

F (N)F (M)F (L) =
∑
{g(F (N)) | g ∈ HomS(F (M), F (L))}

=
∑
{F (f)(F (N)) | f ∈ HomR(M,L)}

=
∑
{F (f(N)) | f ∈ HomR(M,L)}

= F (
∑
{f(N) | f ∈ HomR(M,L)})

= F (NML) ,

which completes the proof. �

Corollary 5.2. Let F : R–Mod→ S–Mod be an equivalence, and let M be a
left R-module. If P is a prime (semiprime) submodule of M , then F (P ) is a
prime (semiprime) submodule of F (M).

Proposition 5.3. Let F : R–Mod → S–Mod be an equivalence, and let M
be an R-module. If M is a fully prime (fully semiprime) left R-module, then
F (M) is a fully prime (fully semiprime) left S-module.

Proof. There is a bijection between the fully invariant submodules of M and
the fully invariant submodules of F (M). It follows from Corollary 5.2 that if
M is a fully prime or fully semiprime module, then so is F (M). �

Theorem 5.4. Let M be a finitely generated quasi-projective module. If M is
a fully semiprime module, then S = EndR(M) is a fully semiprime ring.

Proof. Since M is finitely generated and quasi-projective, HomR(M, IM) = I
for every ideal of S by [15, 18.4]. Hence

(IM)M (IM) = HomR(M, IM)(IM) = I2M

for any ideal I of S. This implies that

I = HomR(M, IM) = HomR(M, (IM)M (IM)) = HomR(M, I2M) = I2
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for any ideal of S. �

Corollary 5.5. Let R be a fully semiprime ring. Then Mn(R) is a fully
semiprime ring for any n > 0.

Proposition 5.6. Let e be an idempotent element of a ring R. If R is a fully
semiprime ring, then so is eRe.

Proof. Let e ∈ R be idempotent, and let I be an ideal of eRe. By [11, 21.11],
we have I = e(RIR)e. Therefore

I = e(RIR)e = e(RIRRIR)e = e(RI2R)e = I2 ,

completing the proof. �

Corollary 5.7. The property of being a fully semiprime ring is a Morita in-
variant property.

We note that in [4, Theorem 2.1, Theorem 2.3] it is proved that if R is a
fully prime ring, then Mn(R) is a fully prime ring for all n > 0, and if e ∈ R is
an idempotent element, then eRe is fully prime.

Theorem 5.8. Let R be a fully prime ring, and let P be a finitely generated
projective R-module. Then EndR(P ) is a fully prime ring.

Proof. There is a positive integer n such that Rn = P ⊕Q. It follows that

Mn(R) ∼=
[

EndR(P ) HomR(Q,P )
HomR(P,Q) EndR(Q)

]
.

Then there exists an idempotent e ∈ Mn(R) such that eMn(R)e ∼= EndR(P ).
Therefore EndR(P ) is a fully prime ring by [4, Theorem 2.1, Theorem 2.3]. �

Theorem 5.9. Let M be an R-module and let S = EndR(M). Suppose that
every fully invariant submodule of M is M -generated. If S is a fully prime
ring, then M is a fully prime module.

Proof. Let N be a proper fully invariant submodule of M . By hypothesis,
HomR(M,N) is a prime ideal of S. It follows from [5, proposition 1.8] that N
is a prime submodule. Thus M is fully prime. �

Example 5.10. Let R be a fully prime ring, and let RP be a finitely generated
projective generator. Then every submodule of P is P -generated, and so it
follows from Theorem 5.9 that P is a fully prime module, because EndR(P ) is
a fully prime ring by Theorem 5.8.

On the other hand, it need not be true that every finitely generated left
R-module is fully prime. In fact, if R is a simple ring with two non-isomorphic
simple modules S1 and S2, then R is a fully prime ring but S1 ⊕ S2 is not
fully prime since the fully invariant submodules S1 ⊕ (0) and (0) ⊕ S2 are
incomparable.
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The following example shows that if M does not generate its fully invariant
submodules, then the conclusion of Theorem 5.9 may not be true.

Example 5.11. Consider the ring R =
[ Z2 Z2

0 Z2

]
. We have the following decom-

position of R, as left a R-module:

R =

[
Z2 0
0 0

]
⊕
[

0 Z2

0 Z2

]
.

Set M =
[

0 Z2

0 Z2

]
. Then EndR(M) ∼= Z2. Hence EndR(M) is a fully prime ring.

On the other hand, [
0 Z2

0 0

]
M

[
0 Z2

0 0

]
= 0.

Thus M is not fully prime.

The following proposition is a partial converse of Theorem 5.9.

Theorem 5.12. Let M be a finitely generated quasi-projective module. If M
is fully prime, then S = EndR(M) is a fully prime ring.

Proof. Since M is finitely generated and quasi-projective, it is shown in [15,
18.4] that HomR(M, IM) = I for every ideal of S. Let I and J be ideals of S.
Then

(JM)M (IM) = HomR(M, IM)JM = IJM .

We claim that if N is a prime submodule of M , then HomR(M,N) is a
prime ideal of S. Let I and J be ideals of S such that IJ ⊆ HomR(M,N).
Then IJM ⊆ HomR(M,N)M ⊆ N . Since (JM)M (IM) = IJM , either
IM ⊆ N or JM ⊆ N . Therefore J = HomR(M,JM) ⊆ HomR(M,N) or
I = HomR(M, IM) ⊆ HomR(M,N), proving the claim. Given an ideal I of S,
it follows that IM is a prime submodule of M , and hence I = HomR(M, IM)
is a prime ideal of S. �

Corollary 5.13 ([4, Theorem 2.1]). Let R be a fully prime ring. Then Mn(R)
is a fully prime ring for any n > 0.

Proof. By Proposition 4.3, Rn is a fully prime module. It follows from Theo-
rem 5.12 that EndR(Rn) ∼= Mn(R) is a fully prime ring. �
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Math. 107 (1980), no. 1, 33–45. https://doi.org/10.4064/fm-107-1-33-45
[4] W. D. Blair and H. Tsutsui, Fully prime rings, Comm. Algebra 22 (1994), no. 13,

5389–5400. https://doi.org/10.1080/00927879408825136
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Benemérita Universidad Autónoma de Puebla
Av. San Claudio y 18 Sur, Col. San Manuel, Ciudad Universitaria, 72570

Puebla, México
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