• Title/Summary/Keyword: semiconductor packaging

Search Result 272, Processing Time 0.022 seconds

An Investigation of Electrical Properties in Cation-anion Codoped ZnO by Atomic Layer Deposition (원자층 증착법 기반 양이온-음이온 이중 도핑 효과에 따른 ZnO 박막의 전기적 특성 비교 연구)

  • Dong-eun Kim;Geonwoo Kim;Kyung-Mun Kang;Akendra Singh Chabungbam;Hyung-Ho Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Zinc oxide(ZnO) is a semiconductor material with a bandgap of 3.37 eV and an exciton binding energy of 60 meV for various applications. Recently ZnO has been proven to enhance its electrical properties for utilization as an alternative for transparent conducting oxide (TCO) materials. In this study, cation(Al, Ga)-anion(F) single and double doped ZnO thin films were grown by atomic layer deposition (ALD) to enhance the electrical properties. The structural and optical properties of doped ZnO thin films were analyzed, and doping effects were confirmed to electrical characteristics. In single doped ZnO, it was observed that the carrier concentration was increased after doping, acting as a donor to ZnO. Among the single doping elements, F doped ZnO(FZO) showed the highest mobility and conductivity due to the passivation effect of oxygen vacancies. In the case of double doping, higher electrical characteristics were observed compared to single doping. Among the samples, Al-F doped ZnO(AFZO) exhibited the lowest resistance value. This results can be attributed to an increase in delocalized electron states and a decrease in lattice distortion resulting from the differences in ionic radius. The partial density of states(PDOS) was also analyzed and observed to be consistent with the experimental results.

Warpage and Solder Joint Strength of Stacked PCB using an Interposer (인터포저를 이용한 Stacked PCB의 휨 및 솔더 조인트 강도 연구)

  • Kipoong Kim;Yuhwan Hwangbo;Sung-Hoon Choa
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.40-50
    • /
    • 2023
  • Recently, the number of components of smartphones increases rapidly, while the PCB size continuously decreases. Therefore, 3D technology with a stacked PCB has been developed to improve component density in smartphone. For the s tacked PCB, it i s very important to obtain solder bonding quality between PCBs. We investigated the effects of the properties, thickness, and number of layers of interposer PCB and sub PCB on warpage of PCB through experimental and numerical analysis to improve the reliability of the stacked PCB. The warpage of the interposer PCB decreased as the thermal expansion coefficient (CTE) of the prepreg decreased, and decreased as the glass transition temperature (Tg) increased. However, if temperature is 240℃ or higher, the reduction of warpage is not large. As FR-5 was applied, the warpage decreased more compared to FR-4, and the higher the number and thickness of the prepreg, the lower the warpage. For sub PCB, the CTE was more important for warpage than Tg of the prepreg, and increase in prepreg thickness was more effective in reducing the warpage. The shear tests indicated that the dummy pad design increased bonding strength. The tumble tests indicated that crack occurrence rate was greatly reduced with the dummy pad.

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.

A Wafer Level Packaged Limiting Amplifier for 10Gbps Optical Transmission System

  • Ju, Chul-Won;Min, Byoung-Gue;Kim, Seong-Il;Lee, Kyung-Ho;Lee, Jong-Min;Kang, Young-Il
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.189-195
    • /
    • 2004
  • A 10 Gb/s limiting amplifier IC with the emitter area of $1.5{\times}10{\mu}m^2$ for optical transmission system was designed and fabricated with a AIGaAs/GaAs HBTs technology. In this stud)', we evaluated fine pitch bump using WL-CSP (Wafer Level-Chip Scale Packaging) instead of conventional wire bonding for interconnection. For this we developed WL-CSP process and formed fine pitch solder bump with the $40{\mu}m$ diameter and $100{\mu}m$ pitch on bonding pad. To study the effect of WL-CSP, electrical performance was measured and analyzed in wafer and package module using WL-CSP. In a package module, clear and wide eye diagram openings were observed and the riselfall times were about 100ps, and the output" oltage swing was limited to $600mV_{p-p}$ with input voltage ranging from 50 to 500m V. The Small signal gains in wafer and package module were 15.56dB and 14.99dB respectively. It was found that the difference of small signal gain in wafer and package module was less then 0.57dB up to 10GHz and the characteristics of return loss was improved by 5dB in package module. This is due to the short interconnection length by WL-CSP. So, WL-CSP process can be used for millimeter wave GaAs MMIC with the fine pitch pad.

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit (전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석)

  • Suh, Il Woong;Lee, Young-ho;Kim, Young-hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1011-1019
    • /
    • 2015
  • Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization

The Development of Automatic Inspection System of Differential Driver Gear through Research Convergence of Industrial and Academia (산학 융합 연구를 통한 차동 기어 자동 검사 시스템의 개발)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.257-263
    • /
    • 2018
  • The purpose of this study is to develop an automatic inspection system for a part of the differential drive gear into the transmission. This technology will make using the microvision automatic test equipment and automatic test equipment microlaser. This is that the operator intends to make the defect rate 0 in the inspection stage of the product which has been carelessly processed. The equipment developed in this research project will be applied to many areas. Packaging companies, nut bolt processing company, precisely supplier for printing on top of the semiconductor, SMT, etc. The company wants to sell the vision inspection equipment for various applications. If the defective rate of 0 is achieved through this research project, it is also possible to secure a stable supply from the parent company, and to lay the foundations for exporting based on product reliability. When the automatic inspection system is applied to domestic automobile parts processing companies, the reliability of automobiles in Korea will be greatly increased.

Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma (유도결합 열 플라즈마를 이용한 고순도 질화알루미늄 나노 분말 합성)

  • Kim, Kyung-In;Choi, Sung-Churl;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Aluminum nitride, which has outstanding properties such as high thermal conductivity and electrical resistivity, has been received a great attention as a substrate and packaging material of semiconductor devices. Since aluminum nitride has a high sintering temperature of 2173 K and its properties depends on the impurity level, it is necessary to synthesize high-purity and nano-sized aluminum nitride powders for the applications. In this research, we synthesized high purity aluminum nitride nanopowders from aluminum using RF induction thermal plasma system. Sheath gas (NH3) flow was controlled to establish the synthesis condition of high purity aluminum nitride nanopowders. The obtained aluminum nitride nanopowders were evaluated by XRD, SEM, TEM, BET, FTIR and N-O analysis.

Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3 (N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.138-143
    • /
    • 2015
  • Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy (Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰)

  • Young-Seo Kim;Young-Jun Cho;Han-Kyun Shin;Hyun Park;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.54-62
    • /
    • 2024
  • SICM (Scanning Ion Conductivity Microscopy) is a technique for measuring surface topography in an environment where electrochemical reactions occur, by detecting changes in ion conductivity as a nanopipette tip approaches the sample. This study includes an investigation of the current response curve, known as the approach curve, according to the distance between the tip and the sample. First, a simulation analysis was conducted on the approach curves. Based on the simulation results, then, several measuring experiments were conducted concurrently to analyze the difference between the simulated and measured approach curves. The simulation analysis confirms that the current squeezing effect occurs as the distance between the tip and the sample approaches half the inner radius of the tip. However, through the calculations, the decrease in current density due to the simple reduction in ion channels was found to be much smaller compared to the current squeezing effect measured through actual experiments. This suggests that ion conductivity in nano-scale narrow channels does not simply follow the Nernst-Einstein relationship based on the diffusion coefficients, but also takes into account the fluidic hydrodynamic resistance at the interface created by the tip and the sample. It is expected that SICM can be combined with SECM (Scanning Electrochemical Microscopy) to overcome the limitations of SECM through consecutive measurement of the two techniques, thereby to strengthen the analysis of electrochemical surface reactivity. This could potentially provide groundbreaking help in understanding the local catalytic reactions in electroless plating and the behaviors of organic additives in electroplating for various kinds of patterns used in semiconductor damascene processes and packaging processes.

Effect of Die Attach Film Composition for 1 Step Cure Characteristics and Thermomechanical Properties (다이접착필름의 조성물이 1단계 경화특성과 열기계적 물성에 미치는 영향에 관한 연구)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.261-267
    • /
    • 2020
  • The demand for faster, lighter, and thinner portable electronic devices has brought about a change in semiconductor packaging technology. In response, a stacked chip-scale package(SCSP) is used widely in the assembly industry. One of the key materials for SCSP is a die-attach film (DAF). Excellent flowability is needed for DAF for successful die attachment without voids. For DAF with high flowability, two-step curing is often required to reduce a cure crack, but one-step curing is needed to reduce the processing time. In this study, DAF composition was categorized into three groups: cure (epoxy resins), soft (rubbers), hard (phenoxy resin, silica) component. The effect of the composition on a cure crack was examined when one-step curing was applied. The die-attach void and flowability were also assessed. The cure crack decreased as the amount of hard components decreased. Die-attach voids also decreased as the amount of hard components decreased. Moreover, the decrease in cure component became important when the amount of hard component was small. The flowability was evaluated using high-temperature storage modulus and bleed-out. A decrease in the amount of hard components was critical for the low storage modulus at 100℃. An increase in cure component and a decrease in hard component were important for the high bleed-out at 120℃(BL-120).