Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.3.138

Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3  

Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
Publication Information
Korean Journal of Materials Research / v.25, no.3, 2015 , pp. 138-143 More about this Journal
Abstract
Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.
Keywords
thin films; sputtering; crystallization; X-ray diffraction; preferred orientation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials; GaN, AlN, InN, BN and SiGe, John Wiley and Sons, NewYork (2002).
2 D. Gaspera, E. Buso, D. Guglielmi, M. Martucci, A. Bello, V. Mattei, G. Post, M. L. Cantalini, C. Agnoli, S. Granozzi, G. Sadek, A. Z. Kalantar-zadeh and K. Wlodarski, Sens. Actuators B, 143, 567 (2010).   DOI   ScienceOn
3 Y. J. Yong, and J. Y. Lee, J. Vac. Sci. Technol. A, 15, 390 (1997).   DOI   ScienceOn
4 D. Y. Wang, Y. Nagahata, M. Masuda, and Y. Hayashi, J. Vac. Sci. Technol. A, 14, 3092 (1996).   DOI   ScienceOn
5 T. Hsiosaki, K. Harada, and A. Kawabata, Jpn. J. Appl. Phys., 21, 69 (1982).   DOI
6 J. H. Bang, D. H. Chang, S. J. Kang, D. G. Kim, and Y. S. Yoon, J. Inst. Electro. Engi. Kor. SD, 43, 1 (2006).
7 J. Yang, C. Wang, X. Yan, K. Too, B. Lin, and Y. Fan, Appl. Phys. Lett., 62, 2790 (1993).   DOI   ScienceOn
8 H. Takikawa, N. Kawakami, and T. Skakibara, Surf. Coat. Tech., 120-121, 383 (1999).   DOI   ScienceOn
9 M. Ishihara, H. Yumoto, T. Tsuchiya, and K. Akashi, Thin Solid Films, 281-283, 321 (1996).
10 M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, and Y. Ide, Thin Solid Films, 316, 152 (1998).   DOI   ScienceOn
11 F. Takeda, R. Takihashi, and T. Mori, Trans. IECE, 101-A, 483 (1980).
12 F. Takeda, T. Mori, and T. Takahashi, Jpn. J. Appl. Phys., 20-3, 169 (1981).
13 C. S. Oh and C. S. Han, Korean J. Met. Mater., 50, 78 (2012).   DOI   ScienceOn
14 T. Shiosaki, T. Yamamoto, T. Oda, K. Harada, and A. Kawabata, Jpn. J. Appl. Phys., 20-3, 149 (1981).