DOI QR코드

DOI QR Code

An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy

Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰

  • Young-Seo Kim (Department of Materials Science and Engineering, Dong-A University) ;
  • Young-Jun Cho (Department of Materials Science and Engineering, Dong-A University) ;
  • Han-Kyun Shin (Department of Materials Science and Engineering, Dong-A University) ;
  • Hyun Park (Department of Materials Science and Engineering, Dong-A University) ;
  • Jung Han Kim (Department of Materials Science and Engineering, Dong-A University) ;
  • Hyo-Jong Lee (Department of Materials Science and Engineering, Dong-A University)
  • 김영서 (동아대학교 공과대학 신소재공학과) ;
  • 조영준 (동아대학교 공과대학 신소재공학과) ;
  • 신한균 (동아대학교 공과대학 신소재공학과) ;
  • 박현 (동아대학교 공과대학 신소재공학과) ;
  • 김정한 (동아대학교 공과대학 신소재공학과) ;
  • 이효종 (동아대학교 공과대학 신소재공학과)
  • Received : 2024.06.12
  • Accepted : 2024.06.30
  • Published : 2024.06.30

Abstract

SICM (Scanning Ion Conductivity Microscopy) is a technique for measuring surface topography in an environment where electrochemical reactions occur, by detecting changes in ion conductivity as a nanopipette tip approaches the sample. This study includes an investigation of the current response curve, known as the approach curve, according to the distance between the tip and the sample. First, a simulation analysis was conducted on the approach curves. Based on the simulation results, then, several measuring experiments were conducted concurrently to analyze the difference between the simulated and measured approach curves. The simulation analysis confirms that the current squeezing effect occurs as the distance between the tip and the sample approaches half the inner radius of the tip. However, through the calculations, the decrease in current density due to the simple reduction in ion channels was found to be much smaller compared to the current squeezing effect measured through actual experiments. This suggests that ion conductivity in nano-scale narrow channels does not simply follow the Nernst-Einstein relationship based on the diffusion coefficients, but also takes into account the fluidic hydrodynamic resistance at the interface created by the tip and the sample. It is expected that SICM can be combined with SECM (Scanning Electrochemical Microscopy) to overcome the limitations of SECM through consecutive measurement of the two techniques, thereby to strengthen the analysis of electrochemical surface reactivity. This could potentially provide groundbreaking help in understanding the local catalytic reactions in electroless plating and the behaviors of organic additives in electroplating for various kinds of patterns used in semiconductor damascene processes and packaging processes.

SICM (scanning ion conductivity microscopy)은 nanopipette이 시료에 접근하게 되면서 tip에 인가되는 전류값의 변화가 발생하는데, 이를 이용하여 시료의 표면 형상을 측정하는 분석기술이다. 본 연구는 SICM mapping의 기본이 되는 tip과 시료 간의 거리에 의한 전류 반응곡선인 approach curve에 대해 연구한 결과를 담고 있다. Approach curve에 대해 우선 시뮬레이션 해석을 진행하였으며, 이를 기반으로 실험을 병행하여 이 둘 사이의 반응 곡선 차이를 분석하였다. 시뮬레이션 해석을 통해 tip과 시료와의 거리가 tip 내경의 절반 이하로 가까워지면서 current squeezing 효과를 확인할 수 있었다. 하지만, 시뮬레이션에 반영된 단순 이온 통로 감소에 의한 전류밀도 감소는 실제 실험을 통해 측정된 current squeezing 효과에 비해 훨씬 작은 것으로 측정되었다. 이는 나노 스케일의 매우 좁은 통로에서 이온전도도는 확산계수에 의한 단순 Nernst-Einstein 관계를 따르는 것이 아니라, tip과 시료가 만들어 내는 벽면에서의 유체역학적 유동 저항성을 고려하는 것이 추가로 필요할 것으로 보인다. 향후 이러한 SICM 측정은 전기화학 표면 반응성을 분석하는 SECM (scanning electrochemical microscopy) 측정기술과 통합되어 SECM 측정 한계를 보완될 수 있을 것으로 기대된다. 그렇게 되면, 반도체 배선 공정 및 패키징 공정에 사용되고 있는 다양한 패턴 형상에서 무전해 도금의 촉매 반응과 전기도금에서 유기첨가제 작용의 국부적 차이를 직접적으로 측정하는 것이 가능하게 될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 정부 과학기술정보통신부 및 과학기술일자리진흥원의 재원으로 미래선도연구장비 핵심기술개발사업단의 지원을 받아 수행된 연구입니다 (과제고유번호: 2024-22030006-00).

References

  1. G. Binning, H. Rohrer, C. Gerber, and E. Weibel "Surface studies by scanning tunneling microscopy", Phys. Rev. Lett., 49(1), 57 (1982).
  2. A. J. Bard, F.-R. F. Fan, J. Kwak, and O. Lev, "Scanning electrochemical microscopy. Introduction and principles", Anal. Chem., 61(2), 132-138 (1989).
  3. P. K. Hansma, B. Drake, O Marti, S. A. Gould, and C. B. Prater, "The scanning ion-conductance microscope", Science, 243(4891), 641-643 (1989).
  4. Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Murakami, H. Shiku, Y. E. Korchev, and T. Matsue, "Simultaneous Noncontact Topography and Electrochemical Imaging by SECM/ SICM Featuring Ion Current Feedback Regulation", J. Am. Chem. Soc., 132(29), 10118-10126 (2010).
  5. D. J. Comstock, J. W. Elam, M. J. Pellin, and M. C. Hersam, "Integrated Ultramicroelectrode-Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy", Anal. Chem., 82(4), 1270-1276 (2010).
  6. J. Rheinlaender and T. E. Schaffer, "Image Formation, Resolution, and Height Measurement in Scanning Ion Conductance Microscopy", J. Appl. Phys., 105(9), 094905 (2009).
  7. Y.-S. Kim, Y.-S. Jeong, H.-K. Shin, J. H. Kim and H.-J. Lee, "A Study on Improving the Current Density Distribution of the Cathode by the Bipolar Phenomenon of the Auxiliary Anode through the Hull Cell Experiment", J. Microelectron. Packag. Soc., 30(1), 71-78 (2023).
  8. S.-J. Kim, H.-K. Shin, H. Park and H.-J. Lee, "A Study on The Effect of Current Density on Copper Plating for PCB through Electrochemical Experiments and Calculations", J. Microelectron. Packag. Soc., 29(1), 49-54 (2022).
  9. Website of Park Systems Corp., (June 9, 2024) from https://www.parksystems.com/kr/park-afm-technology/park-sicm
  10. S.-H. Kim, H.-J. Lee, D. Josell and T. P. Moffat, "Bottom-up Cu Filling of Annular through Silicon Vias Microstructure and Texture", Electrochimica Acta, 335, 135612 (2020).
  11. S. H. Kim, H. K. Shin, C. M. Park, D. U. Kim, P. R. Cha, U. H. Lee, and H. J. Lee, "Shape Change of Cu Pillar Solder Bump During Reflow Process and Its Modeling", Korean. J. Met. Mater., 53(7), 495-499 (2015).
  12. T. M. Braun, D. Josell, M. Silva, J. Kildon and T. P. Moffat, "Effect of Chloride Concentration on Copper Deposition in Through Silicon Vias", J. Electrochem. Soc., 166(1), D3259 (2019).
  13. J. Heo, C. Seong, V. Burungale, P. Mane, M. S. Lee and J.-S. Ha, "Copper-Based Electrochemical CO2 Reduction and C2+ Products Generation: A Review", J. Microelectron. Packag. Soc., 30(4), 17-31 (2023).