DOI QR코드

DOI QR Code

An Investigation of Electrical Properties in Cation-anion Codoped ZnO by Atomic Layer Deposition

원자층 증착법 기반 양이온-음이온 이중 도핑 효과에 따른 ZnO 박막의 전기적 특성 비교 연구

  • Dong-eun Kim (Department of Materials Science and Engineering, Yonsei University) ;
  • Geonwoo Kim (Department of Materials Science and Engineering, Yonsei University) ;
  • Kyung-Mun Kang (Department of Materials Science and Engineering, Yonsei University) ;
  • Akendra Singh Chabungbam (Department of Materials Science and Engineering, Yonsei University) ;
  • Hyung-Ho Park (Department of Materials Science and Engineering, Yonsei University)
  • 김동은 (연세대학교 신소재공학과) ;
  • 김건우 (연세대학교 신소재공학과) ;
  • 강경문 (연세대학교 신소재공학과) ;
  • ;
  • 박형호 (연세대학교 신소재공학과)
  • Received : 2023.09.13
  • Accepted : 2023.09.23
  • Published : 2023.09.30

Abstract

Zinc oxide(ZnO) is a semiconductor material with a bandgap of 3.37 eV and an exciton binding energy of 60 meV for various applications. Recently ZnO has been proven to enhance its electrical properties for utilization as an alternative for transparent conducting oxide (TCO) materials. In this study, cation(Al, Ga)-anion(F) single and double doped ZnO thin films were grown by atomic layer deposition (ALD) to enhance the electrical properties. The structural and optical properties of doped ZnO thin films were analyzed, and doping effects were confirmed to electrical characteristics. In single doped ZnO, it was observed that the carrier concentration was increased after doping, acting as a donor to ZnO. Among the single doping elements, F doped ZnO(FZO) showed the highest mobility and conductivity due to the passivation effect of oxygen vacancies. In the case of double doping, higher electrical characteristics were observed compared to single doping. Among the samples, Al-F doped ZnO(AFZO) exhibited the lowest resistance value. This results can be attributed to an increase in delocalized electron states and a decrease in lattice distortion resulting from the differences in ionic radius. The partial density of states(PDOS) was also analyzed and observed to be consistent with the experimental results.

투명 전도성 산화물(TCO)를 대체할 수 있는 대표적인 물질로 알려진 ZnO는 3.37 eV의 bandgap과 60 meV의 exciton binding energy를 가진 반도체 물질이다. 본 연구에서는 투명 전극으로 사용하기 위한 높은 전기적 특성을 확보하기 위해 원자층 증착법을 기반으로 양이온과 음이온의 단일 및 이중 도핑에 따라 성장한 ZnO 박막을 제작하였다. 3가 양이온 Al, Ga과 음이온 F이 단일 및 이중 도핑된 ZnO 박막의 구조적, 광학적 특성 및 전기적 특성을 확인하였다. 단일 도핑의 경우, ZnO에 donor로 작용하는 Al, Ga, F에 의해 캐리어 농도가 도핑 전에 비해 증가하였고 근자외선 영역에서의 band-edge absorption이 증가하는 것을 확인하였다. 단일 도핑 중에서는 F이 ZnO 내 산소 공공 자리에 passivation 되면서 높은 mobility와 함께 가장 높은 전도도를 보였다. 이중 도핑의 경우, 각 원소들의 도핑 효과가 더해지면서 단일 도핑에 비해 높은 전기적 특성을 보였다. 결과적으로 Ga-F에 비해 Al-F 도핑 시 ionic radius 차이에 의한 lattice distortion 감소 및 delocalized 된 전자 상태의 증가로 가장 낮은 비저항 값을 보였으며 PDOS 분석을 통한 시뮬레이션 데이터로 측정 값과 일치하는 결과를 확인했다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. RS-2023-00208801).

References

  1. J. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone and A. Terrasi, "Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrode", Thin Solid Films, 520(13), 4432-4435 (2012). https://doi.org/10.1016/j.tsf.2012.02.080
  2. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. -J. Cho and H. Morkoc, "A comprehensive review of ZnO materials and devices", J. Appl. Phys., 98(4) (2005).
  3. 3 J. Ma, F. Ji, D. Zhang, H. Ma and S. Li, "Optical and electronic properties of transparent conducting ZnO and ZnO:Al films prepared by evaporating method", Thin Solid Films, 357, 98-101 (1999). https://doi.org/10.1016/S0040-6090(99)00357-0
  4. B. Efafi, S. Mousavi, M. Ara, B. Ghafari and H. Mazandarani, "A method for optimizing the electrical conductivity of Al:ZnO TCO films", Mater. Lett., 195, 52-54 (2017). https://doi.org/10.1016/j.matlet.2017.02.079
  5. K. Ellmer, and R. Mientus, "Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries", Thin Solid Films, 516(17), 5829-5835 (2008). https://doi.org/10.1016/j.tsf.2007.10.082
  6. K. Matsubara, P. Fons, K. Itawa, A. Yamada, K. Sakurai, H. Tampo and S, Niki, "ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications", Thin Solid Films, 431, 369-372 (2003).
  7. Z. Chen, G. Fang, C. Li, S. Sheng, G. Jie and X. -Z. Zhao, "Fabrication and vacuum annealing of transparent conductive Ga-doped Zn0.9Mg0.1O thin films prepared by pulsed laser deposition technique", Appl. Surf. Sci., 252, 8657-8661 (2006). https://doi.org/10.1016/j.apsusc.2005.12.018
  8. H. C. Han, I. J. Kim, W. P. Tai, J. K. Kim, M. S. Shim, S. J. Suh and Y. S. Kim, "Structural, optical, electrical properties of ZnO thin films with Zn concentration", J. Korean Ceram. Soc., 40, 1113-1119 (2003). https://doi.org/10.4191/KCERS.2003.40.11.1113
  9. M. C. Jun, S. U. Park and J. H. Koh, "Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films", Nanoscale Res. Lett., 7, 1-6 (2012). https://doi.org/10.1186/1556-276X-7-1
  10. K. U. Sim, S. W. Shin, A. V. Moholkar, J. H. Yun, J. H. Moon and J. H. Kim, "Effects of dopant (Al, Ga, and In) on the characteristics of ZnO thin films prepared by RF magnetron sputtering system", Curr. Appl. Phys., 10(3), S463-S467 (2010). https://doi.org/10.1016/j.cap.2010.02.028
  11. G. P. Papari, B. Silvestri, G. Vitiello, L. D. Stefano, I. Rea, G. Luciani, A. Aronne and A. Andreone, "Morphological, Structural, and Charge Transfer Properties of F-Doped ZnO: A Spectroscopic Investigation", J. Phys. Chem. C, 121(29), 16012-16020 (2017). https://doi.org/10.1021/acs.jpcc.7b04821
  12. D. -J. Lee, H. -M. Kim, J. -Y. Kwon, H. Choi, S. -H. Kim and K. -B. Kim, "Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films", Adv. Funct. Mater., 21(3), 448-455 (2011). https://doi.org/10.1002/adfm.201001342
  13. H. Serier, A. Demourgues and M. Gaudon, "Investigation of Ga Substitution in ZnO Powder and Opto-Electronic Properties", Inorg. Chem., 49(15), 6853-6858 (2010). https://doi.org/10.1021/ic1000733
  14. J. Hu and R. G. Gordon, "Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells", Solar cells, 30(1-4), 437-450 (1991). https://doi.org/10.1016/0379-6787(91)90076-2
  15. J. Rousset, E. Saucedo and D. Lincot, "Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications", Chem. Mater., 21(3), 534-540 (2009). https://doi.org/10.1021/cm802765c
  16. Y. -J. Choi and H. -H. park, "A simple approach to the fabrication of fluorine-doped zinc oxide thin films by atomic layer deposition at low temperatures and an investigation into the growth mode", J. Mater. Chem. C., 2(1), 98-108 (2014). https://doi.org/10.1039/C3TC31478B
  17. 17 . Y. H. Kim, J. Jeong, K. S. Lee, J. K. Park, Y. J. Baik, T. -Y. Seong and W. M. Kim, "Characteristics of ZnO:Al thin films co-doped with hydrogen and fluorine", Appl. Surf. Sci., 256(16), 5102-5107 (2010). https://doi.org/10.1016/j.apsusc.2010.03.076
  18. B. Houng and H. B. Chen, "Effect of discharge power density on the properties of Al and F co-doped ZnO thin films prepared at room temperature", J. Electroceramics., 29, 1-7 (2012). https://doi.org/10.1007/s10832-012-9726-3
  19. K. -M. Kang, Y. Wang, M. Kim, C. Lee and H. -H. Park, "Al/F codoping effect on the structural, electrical, and optical properties of ZnO films grown via atomic layer deposition", Appl. Surf. Sci., 535, 147734 (2021).
  20. K. -M. Kang, Y. Wang, M. Kim and H. -H. Park, "Study on properties of Ga/F-co-doped ZnO thin films prepared using atomic layer deposition", Thin Solid Films, 660, 913-919 (2018). https://doi.org/10.1016/j.tsf.2018.02.030
  21. M. Godlewski, E. Guziewicz, G. Luka, T. Krajewski, M. Lukasiewicz, L. Wachnicki, A. Wachnicka, K. Kopalko, A. Sarem and B. Dalati, "ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide", Thin Solid Fims, 518(4), 1145-1148 (2009). https://doi.org/10.1016/j.tsf.2009.04.066
  22. P. J. Reed, H. Mehrabi, Z. G. Schichtl and R. H. Coridan, "Enhanced Electrochemical Stability of TiO2-Protected, Al-doped ZnO Transparent Conducting Oxide Synthesized by Atomic Layer Deposition", ACS Appl. Mater. Interfaces, 10(50), 43691-43698 (2018). https://doi.org/10.1021/acsami.8b16531
  23. T. Tynell, H. Yamauchi, M. Karppinen, R. Okazaki and I. Terasaki, "Atomic layer deposition of Al-doped ZnO thin films", J. Vac. Sci., 31(1) (2013).
  24. D. -J. Lee, H. -M. Kim, J. -Y. Kwon, H. Choi, S. -H. Kim and K. -B. Kim, "Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films", Adv. Funct. Mater., 21(3), 448-455 (2011). https://doi.org/10.1002/adfm.201001342
  25. P. Nunes, E. Fortunato, P. Tonello, F. B. Fernandes, P. Vilarinho and R. Martins, "Effect of different dopant elements on the properties of ZnO thin films", Vacuum, 64(3-4), 281-285 (2002). https://doi.org/10.1016/S0042-207X(01)00322-0
  26. G. M. Nam and M. S. Kwon, "Characterization of F- and Al-codoped ZnO Transparent Conducting Thin Film prepared by Sol-Gel Spin Coating Method", J. Korean Ceram. Soc., 53(3), 338-342 (2016). https://doi.org/10.4191/kcers.2016.53.3.338
  27. T. S. Moss, "The Interpretation of the Properties of Indium Antimonide", Proc. Phys. Soc., 67(10), 775 (1954).
  28. J. Y. Kim, Y. -J. Choi, H. -H. Park, S. Golledge and D. C. Johnson, "Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films", J. Vac. Sci. Technol. A., 28(5), 1111-1114 (2010). https://doi.org/10.1116/1.3460905
  29. H. Tanaka, K. Ihara, T. Miyata, H. Sato and T. Minami, "Low resistivity polycrystalline ZnO:Al thin films prepared by pulsed laser deposition", J. Vac. Sci. Technol. A., 22(4), 1757-1762 (2004). https://doi.org/10.1116/1.1763903
  30. S. Kumar, P. Kaur, C. L. Chen, R. Thangavel, C. L. Dong, Y. K. Ho, J. F. Lee, T. S. Chan, T. K. Chen, B. H. Mok, S. M. Rao and M. K. Wu, "Structural, optical and magnetic characterization of Ru doped ZnO nanorods", J. Alloys Compd., 588, 705-709 (2014). https://doi.org/10.1016/j.jallcom.2013.11.137
  31. H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, "Semiconducting Transparent Thin Films", Institute of Physics Publishing, Philadelphia (1995).
  32. Y. Kim, W. Lee, D. -R. Jung, J. Kim, S. Nam, K. Kim and B. Park, "Optical and electronic properties of post-annealed ZnO:Al thin films", Appl. Phys. Lett., 96(17) (2010).
  33. N. Tu, H. V. Bui, D. Q. Trung, A. -T. Duong, D. M. Thuy, D. H. Nguyen, K. T. Nguyen and P. T. Huy, "Surface oxygen vacancies of ZnO: A facile fabrication method and their contribution to the photoluminescence", J. Alloys Compd., 791, 722-729 (2019). https://doi.org/10.1016/j.jallcom.2019.03.395
  34. K. -M. Kang and H. -H. Park, "Effect of Atomic Layer Deposition Temperature on the Growth Orientation, Morphology, and Electrical, Optical, and Band-Structural Properties of ZnO and Fluorine-Doped ZnO Thin Films", J. Phys. Chem. C., 122(1), 377-385 (2018). https://doi.org/10.1021/acs.jpcc.7b08943
  35. F. -H. Wang and C. -L. Chang, "Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering", Appl. Surf. Sci., 370, 83-91 (2016). https://doi.org/10.1016/j.apsusc.2016.02.161
  36. A. V. Singh, R. M. Mehra, A. Yoshida and A. Wakahara, "Doping mechanism in aluminum doped zinc oxide films", J. Appl. Phys. A., 95(7), 3640-3643 (2004). https://doi.org/10.1063/1.1667259
  37. D. H. Zhang and H. L. Ma, "Scattering mechanisms of charge carriers in transparent conducting oxide films", Appl. Phys. A, 62, 487-492 (1996). https://doi.org/10.1007/BF01567122
  38. J. -H. Lee and B. -O. Park, "Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method", Thin Solid Films, 426(1-2), 94-99 (2003). https://doi.org/10.1016/S0040-6090(03)00014-2
  39. Q. Shi, K. Zhou, M. Dai, S. Lin, H. Hou, C. Wei and F. Hu, "Structural and opto-electric properties of Ga and F codoped ZnO thin films on PC substrates", Vacuum, 94, 81-83 (2013). https://doi.org/10.1016/j.vacuum.2013.01.008
  40. B. G. Choi, I. H. Kim, D. H. Kim, K. S. Lee, T. S. Lee, B. Cheong, Y. -J. Baik and W. M. Kim, "Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter", J. Eur. Ceram., 25(12), 2161-2165 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.023
  41. J. Jia, A. Takasaki, N. Oka and Y. Shigesato, "Experimental observation on the Fermi level shift in polycrystalline Al-doped ZnO films", J. Appl. Phys., 112(1) (2012).
  42. T. Serin, A. Yildiz, S. Uzun, E Cam and N Serin, "Electrical conduction properties of In-doped ZnO thin films", Phys. Scr., 84(6), 065703 (2011).
  43. R. Cao, H. -X. Deng and J. -W. Luo, "Design Principles of p-Type Transparent Conductive Materials", ACS Appl. Mater. Interfaces, 11(28), 24837-24849 (2019). https://doi.org/10.1021/acsami.9b01255
  44. L. Wang, X. Zhu, L. Bai, L. Lu, Y. Li and X. Qin, "Study of Electronic Band Structure and Optical Properties Al-F co-doped ZnO", Curr. Nanosci., 14(6), 520-527 (2018). https://doi.org/10.2174/1573413714666180629144303
  45. F. P. Shabino, L. N. D. Oliveira and J. L. F. Silva, "Role of atomic radius and d-states hybridization in the stability of the crystal structure of M2O3 (M=Al, Ga, In) oxides", Phys. Rev. B., 90(15), 155206 (2014).
  46. J. H. W. Wit, "Structural aspects and defect chemistry in In2O3", J. Solid State Chem., 20(2), 143-148 (1977). https://doi.org/10.1016/0022-4596(77)90061-5
  47. J. Ma, W. Zhang, J. Lin, Y. Sun, J. Ma, H. Xu, Y. Liu and G. Yang, "Theoretical study on group III elements and F co-doped ZnO", J. Alloys Compd., 819, 153012 (2020).