• Title/Summary/Keyword: semi-symmetric metric connection

Search Result 55, Processing Time 0.033 seconds

EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.163-175
    • /
    • 2013
  • In this paper, we prove a classification theorem for Einstein lightlike hypersurfaces M of a Lorentzian space form ($\bar{M}$(c), $\bar{g}$) with a semi-symmetric metric connection subject such that the second fundamental forms of M and its screen distribution S(TM) are conformally related by some non-zero constant.

RESULTS CONCERNING SEMI-SYMMETRIC METRIC F-CONNECTIONS ON THE HSU-B MANIFOLDS

  • Uday Chand De;Aydin Gezer;Cagri Karaman
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.837-846
    • /
    • 2023
  • In this paper, we firstly construct a Hsu-B manifold and give some basic results related to it. Then, we address a semi-symmetric metric F-connection on the Hsu-B manifold and obtain the curvature tensor fields of such connection, and study properties of its curvature tensor and torsion tensor fields.

ON A SEMI-SYMMETRIC METRIC CONNECTION IN AN (ε)-KENMOTSU MANIFOLD

  • Singh, Ram Nawal;Pandey, Shravan Kumar;Pandey, Giteshwari;Tiwari, Kiran
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.331-343
    • /
    • 2014
  • The object of the present paper is to study a semi-symmetric metric connection in an (${\varepsilon}$)-Kenmotsu manifold. In this paper, we study a semi-symmetric metric connection in an (${\varepsilon}$)-Kenmotsu manifold whose projective curvature tensor satisfies certain curvature conditions.

A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho;Lee, Jae Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.705-717
    • /
    • 2013
  • In this paper, we study the geometry of half lightlike submanifolds M of a semi-Riemannian manifold $\tilde{M}$ with a semi-symmetric non-metric connection subject to the conditions; (1) the characteristic vector field of $\tilde{M}$ is tangent to M, the screen distribution on M is totally umbilical in M and the co-screen distribution on M is conformal Killing, or (2) the screen distribution is integrable and the local lightlike second fundamental form of M is parallel.

ON ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD WITH A CERTAIN CONNECTION

  • Ahmad, Mobin;Haseeb, Abdul;Jun, Jae-Bok;Rahman, Shamsur
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.235-243
    • /
    • 2010
  • In a Riemannian manifold, the existence of a new connection is proved. In particular cases, this connection reduces to several symmetric, semi-symmetric and quarter symmetric connections, even some of them are not introduced so far. So, in this paper, we define a quarter symmetric semi-metric connection in an almost r-paracontact Riemannian manifold and consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold with that connection.

EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZ SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1367-1376
    • /
    • 2013
  • We study Einstein lightlike hypersurfaces M of a Lorentzian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection subject to the conditions; (1) M is screen conformal and (2) the structure vector field ${\zeta}$ of $\tilde{M}$ belongs to the screen distribution S(TM). The main result is a characterization theorem for such a lightlike hypersurface.