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EINSTEIN LIGHTLIKE HYPERSURFACES OF A

LORENTZIAN SPACE FORM WITH A SEMI-SYMMETRIC

METRIC CONNECTION

Dae Ho Jin

Abstract. In this paper, we prove a classification theorem for Einstein
lightlike hypersurfaces M of a Lorentzian space form (M̄(c), ḡ) with a
semi-symmetric metric connection subject such that the second funda-
mental forms of M and its screen distribution S(TM) are conformally
related by some non-zero constant.

1. Introduction

In the classical theory of spacetime, the Riemannian curvature tensor will
affect the rate of change of separation of null and timelike curves (see Sections
4.1 and 4.2 in [8]). Null curves can represent the histories of photons, the
effect of the Riemannian curvature tensor will be to distort or focus small
bundles of light rays. While the rest spaces of timelike curves are spacelike
subspaces of the tangent spaces, the rest spaces of null curves are lightlike
subspaces of the tangent spaces [12]. To investigate this, Hawking and Ellis
introduced the notion of so-called screen spaces in Section 4.2 of their book
[8]. Since for any semi-Riemannian manifold there is a natural existence of
lightlike subspaces, in a 1996 book [4] Duggal-Bejancu published their work on
the general theory of degenerate (lightlike) submanifolds to fill a gap in the
study of submanifolds. Since then there has been very active study on lightlike
geometry of submanifolds (see up-to date results in two books [5, 7]).

The classification of Einstein hypersurfaces M in Euclidean spaces Rn+1

was first studied by Fialkow [10] and Thomas [13] in the middle of 1930’s. It
was proved that if M is a connected Einstein hypersurface (n ≥ 3), that is
Ric = κg, for some constant κ, then κ is non-negative. Moreover,

• if κ = 0, then M is locally isometric to Rn and
• if κ > 0, then M is contained in an n-sphere.

Received July 28, 2011; Revised January 5, 2012.
2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
Key words and phrases. screen homothetic, Einstein manifold, semi-symmetric metric

connection.

c©2013 The Korean Mathematical Society

163



164 DAE HO JIN

Motivated by the rich existing Riemannian geometry endow with a semi-
symmetric metric connection (see two papers of Hayden [9] and Yano [15]), we
study lightlike hypersurfaces M of a semi-Riemannian manifold M̄ admitting
a semi-symmetric metric connection. The objective of this paper is the study
of lightlike version of above classical results. We focus on the geometry of Ein-
stein lightlike hypersurfaces (M, g) of a Lorentzian space form (M̄(c), ḡ) with
a semi-symmetric metric connection subject such that whose shape operator
is homothetic to the shape operator of its screen distribution. The reason for
this geometric condition on M is due to the fact that such a class admits a
canonical integrable screen distribution and a symmetric induced Ricci tensor
of M [1]. These both conditions are required to recover an induced scalar
curvature of M of a Lorentzian manifold [3]. The paper contains several new
results which are related to the symmetric Ricci tensor. Calling such a class
by screen homothetic lightlike hypersurfaces (M, g), we prove that M is locally
a product manifold L × Mρ × Mσ, where L is a null curve, and Mρ and Mσ

are leaves of some distributions of M (Theorem 4.1). Using this theorem we
prove a characterization theorem for Einstein screen homothetic lightlike hy-
persurfaces M of a Lorentzian space form M̄(c) with a semi-symmetric metric
connection (Theorem 4.2).

2. Semi-symmetric metric connection

Let (M̄, ḡ) be a semi-Riemannian manifold. A connection ∇̄ on M̄ is called
a semi-symmetric metric connection [9, 14, 15] if it is metric, i.e., ∇̄X ḡ = 0
and its torsion tensor T̄ satisfies

(2.1) T̄ (X,Y ) = π(Y )X − π(X)Y,

for any vector fields X and Y of M̄ , where π is a 1-form on M̄ .
Let (M, g) be a lightlike hypersurface of a semi-Riemannian manifold (M̄, ḡ).

It is well known that the normal bundle TM⊥ of the lightlike hypersurfaces
M is a vector subbundle of TM , of rank 1. A complementary vector bundle
S(TM) of TM⊥ in TM is non-degenerate distribution on M , which called a
screen distribution on M , such that

(2.2) TM = TM⊥ ⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth
functions on M and by Γ(E) the F (M) module of smooth sections of a vector
bundle E over M . It is well-known [4] that, for any null section ξ of TM⊥ on
a coordinate neighborhood U ⊂ M , there exists a unique null section N of a
unique vector bundle tr(TM) in S(TM)⊥ satisfying

ḡ(ξ, N) = 1, ḡ(N, N) = ḡ(N, X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) and N the transversal vector bundle and the null transversal

vector field of M with respect to the screen distribution respectively. Then the
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tangent bunde TM̄ of M̄ is decomposed as follow:

(2.3) TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

Let P be the projection morphism of Γ(TM) on Γ(S(TM)) with respect to
the decomposition (2.2). From the decompositions (2.2) and (2.3), the local
Gauss and Weingartan formulas of M and S(TM) are given respectively by

∇̄XY = ∇XY +B(X,Y )N,(2.4)

∇̄XN = −ANX + τ(X)N,(2.5)

∇XPY = ∇∗
XPY + C(X,PY )ξ,(2.6)

∇Xξ = −A∗
ξX − τ(X)ξ,(2.7)

for any X, Y ∈ Γ(TM), where the symbols ∇ and ∇∗ are the induced linear
connections on TM and S(TM) respectively, B and C are the local second
fundamental forms on TM and S(TM) respectively, AN and A∗

ξ are the shape

operators on TM and S(TM) respectively and τ is a 1-form on TM . The
induced connection ∇ on M is not metric and satisfies

(2.8) (∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ),

for any X, Y, Z ∈ Γ(TM), where η is a 1-form on TM such that

(2.9) η(X) = ḡ(X,N), ∀X ∈ Γ(TM).

But the connection ∇∗ is metric. Using (2.1) and (2.4), we show that

(2.10) T (X,Y ) = π(Y )X − π(X)Y, ∀X, Y ∈ Γ(TM)

and B is symmetric, where T is the torsion tensor with respect to∇. From (2.8)
and (2.10), we show that the induced connection ∇ of M is a semi-symmetric
non-metric connection of M . From the fact B(X,Y ) = ḡ(∇̄XY, ξ), we know
that B is independent of the choice of a screen distribution and satisfies

(2.11) B(X, ξ) = 0, ∀X ∈ Γ(TM).

The above second fundamental forms are related to their shape operators by

g(A∗
ξX,Y ) = B(X,Y ), ḡ(A∗

ξX,N) = 0,(2.12)

g(A
N
X,PY ) = C(X,PY ), ḡ(A

N
X,N) = 0,(2.13)

for all X, Y ∈ Γ(TM). By (2.12), we show that A∗
ξ is Γ(S(TM))-valued self-

adjoint shape operators related to B and satisfies

(2.14) A∗
ξξ = 0.

In general, S(TM) is not necessarily integrable. The following result gives
equivalent conditions for the integrability of S(TM):

Theorem 2.1. Let M be a lightlike hypersurface of a semi-Riemannian man-

ifold (M̄, ḡ) admitting a semi-symmetric metric connection. The following as-

sertions are equivalent:
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(1) The screen distribution S(TM) is an integrable distribution.

(2) C is symmetric, i.e., C(X,Y ) = C(Y,X) for all X,Y ∈ Γ(S(TM)).
(3) The shape operator A

N
is self-adjoint with respect to g, i.e.,

g(A
N
X,Y ) = g(X,A

N
Y ), ∀X, Y ∈ Γ(S(TM)).

Proof. First, note that a vector field X on M belongs to S(TM) if and only if
we have η(X) = 0. Next, by using (2.6) and (2.10), we have

C(X,Y )− C(Y,X) = η([X,Y ]), ∀X, Y ∈ Γ(S(TM)),

which implies the equivalence of (1) and (2). Finally, the equivalence of (2)
and (3) follows from the first equation of (2.13) [denote (2.13)1]. �

Note 1. In case S(TM) is integrable, M is locally a product manifold L×M∗

where L is a null curve tangent to the normal bundle TM⊥ and M∗ is a leaf
of the screen distribution S(TM) [4, 5].

Denote by R̄ , R and R∗ the curvature tensors of the semi-symmetric metric
connection ∇̄ on M̄ , the induced connection ∇ on M and the induced con-
nection ∇∗ on S(TM) respectively. Using the Gauss -Weingarten equations
(2.4)∼(2.7) for M and S(TM), for any X, Y, Z, W ∈ Γ(TM), we obtain the
Gauss-Codazzi equations for M and S(TM) :

(2.15)
ḡ(R̄(X,Y )Z, PW )

= g(R(X,Y )Z, PW ) + B(X,Z)C(Y, PW )−B(Y, Z)C(X,PW ),

(2.16)

ḡ(R̄(X,Y )Z, ξ)

= (∇XB)(Y, Z)− (∇Y B)(X,Z)

+ [τ(X)− π(X)]B(Y, Z)− [τ(Y )− π(Y )]B(X,Z),

(2.17) ḡ(R̄(X,Y )Z, N) = g(R(X,Y )Z, N),

(2.18)

ḡ(R̄(X,Y )ξ, N)

= ḡ(R(X,Y )ξ, N)

= g(A∗
ξX,A

N
Y )− g(A∗

ξY,AN
X)− 2dτ(X,Y ),

(2.19)

g(R(X,Y )PZ, PW )

= g(R∗(X,Y )PZ, PW )

+ C(X,PZ)B(Y, PW )− C(Y, PZ)B(X,PW ),

(2.20)

g(R(X,Y )PZ, N)

= (∇XC)(Y, PZ)− (∇Y C)(X,PZ)

+ [τ(Y ) + π(Y )]C(X,PZ)− [τ(X) + π(X)]C(Y, PZ).
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The Ricci tensor, denoted by R̄ic, of M̄ is defined by

(2.21) R̄ic(X,Y ) = trace{Z → R̄(Z,X)Y }

for any X, Y ∈ Γ(TM̄). Locally, R̄ic is given by

R̄ic(X,Y ) =
m+2∑

i=1

ǫi ḡ(R̄(Ei, X)Y, Ei),

where {E1, . . . , Em+2} is an orthonormal frame field of TM̄ . If

(2.22) R̄ic = κ̄g,

then we say that M̄ is an Einstein manifold. If dim(M̄) > 2, then κ̄ is a
constant. For dim(M̄) = 2, any M̄ is Einstein but κ̄ in (2.22) is not necessarily
constant. The scalar curvature r̄ is defined by

(2.23) r̄ =

m+2∑

i=1

ǫi R̄ic(Ei, Ei).

Putting (2.22) in (2.23) implies that M̄ is Einstein if and only if

R̄ic =
r̄

m+ 2
ḡ.

A semi-Riemannian manifold M̄ of constant curvature c is called a space

form and denote it by M̄(c). In this case, the curvature R̄ of M̄ is given by

(2.24) R̄(X,Y )Z = c{ḡ(Y, Z)X − ḡ(X,Z)Y }, ∀X, Y, Z ∈ Γ(TM̄).

3. Induced Ricci and scalar curvatures

Consider an induced quasi-orthonormal frame field {ξ;Wa} on M , where
TM⊥ = Span{ξ} and S(TM) = Span{Wa} and let E = {ξ,N,Wa} be the
corresponding frame field on M̄ . Then, by using (2.21), we obtain

R̄ic(X,Y ) =

m∑

a=1

ǫa ḡ(R̄(Wa, X)Y, Wa)(3.1)

+ ḡ(R̄(ξ,X)Y, N) + ḡ(R̄(N,X)Y, ξ),

where ǫa denotes the causal character (±1) of respective vector field Wa. Let
R(0, 2) denote the induced Ricci type tensor of type (0, 2) on M given by

(3.2) R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y } , ∀X, Y ∈ Γ(TM).

Using the induced quasi-orthonormal frame field {ξ;Wa} on M , we obtain

R(0, 2)(X,Y ) =

m∑

a=1

ǫa g(R(Wa, X)Y, Wa) + ḡ(R(ξ,X)Y, N).
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Substituting (2.15) and (2.17) in (3.1) an using (2.12) and (2.13), we obtain

R(0, 2)(X,Y ) = R̄ic(X,Y ) +B(X,Y )trAN(3.3)

− g(ANX,A∗
ξY )− ḡ(R(ξ, Y )X, N)

for any X, Y ∈ Γ(TM). This shows that R(0, 2) is not symmetric. A tensor
field R(0, 2) of M is called its induced Ricci tensor, denoted by Ric, if it is
symmetric. Using (2.18), (3.3) and the first Bianchi’s identity, we obtain

R(0, 2)(X, Y )−R(0, 2)(Y, X) = 2dτ(X, Y ), ∀X, Y ∈ Γ(TM).

Theorem 3.1. Let M be a lightlike hypersurface of a semi-Riemannian man-

ifold M̄ admitting a semi-symmetric metric connection. Then the Ricci type

tensor R(0, 2) of M is an induced symmetric Ricci tensor if and only if the

1-form τ is closed, i.e., dτ = 0, on any coordinate neighborhood U ⊂ M .

Note 2. If R(0, 2) is symmetric, then the 1-form τ is closed on TM . Therefore
there exists a smooth function f such that τ = df . Consequently we get
τ(X) = X(f). If we take ξ̄ = α ξ, it follows that τ(X) = τ̄(X) + X(Inα).
Setting α = exp(f) in this equation, we get τ̄ (X) = 0 for any X ∈ Γ(TM).
We call the pair {ξ, N} such that the corresponding 1-form τ vanishes the
canonical null pair of M . Although S(TM) is not unique, it is canonically
isomorphic to the factor vector bundle S(TM)♯ = TM/Rad(TM) considered
by Kupeli [11]. Thus all S(TM) are mutually isomorphic. For this reason, we
consider only lightlike hypersurfaces M with the canonical null pair {ξ,N} of a
semi-Riemannian manifold M̄ admitting a semi-symmetric metric connection.

The scalar curvature r̄ of M̄ , defined by (2.23), and the scalar quantity r of
M , obtained from R(0, 2) by the method of (2.23) are given by

r̄ = R̄ic(ξ, ξ) + R̄ic(N,N) +

m∑

a=1

ǫa R̄ic(Wa,Wa),

r = R(0, 2)(ξ, ξ) +
m∑

a=1

ǫa R
(0, 2)(Wa,Wa),

respectively. Using these relations and (3.3), we obtain

R(0, 2)(ξ, ξ) = R̄ic(ξ, ξ)

R(0, 2)(Wa,Wa) = R̄ic(Wa,Wa) + g(A∗
ξWa,Wa)trAN

− g(ANWa, A
∗
ξWa)− ḡ(R(ξ, Wa)Wa, N).

Thus we have

r = r̄ + trA∗
ξ trAN − tr(A∗

ξAN )(3.4)

−

m∑

a=1

ǫa{ḡ(R(ξ,Wa)Wa, N) + ḡ(R̄(N,Wa)Wa, N)}.
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For any semi-Riemannian space form M̄(c), we have

R̄(ξ, Y )X = cḡ(X, Y )ξ, R̄ic(X, Y ) = (m+ 1)c ḡ(X, Y )

and r̄ = cm(m+ 1), ḡ(R̄(N, Wa)Wa, N) = 0. Thus

R(0, 2)(X,Y ) = mc g(X,Y ) +B(X,Y )trAN − g(ANX,A∗
ξY );(3.5)

r = m2c+ trA∗
ξ trAN − tr(A∗

ξAN ).(3.6)

Definition 1. A lightlike hypersurface M of a semi-Riemannian manifold
(M̄, ḡ) is screen homothetic [1] if there exist a non-zero constant ϕ such that
the shape operators AN and A∗

ξ of M and its screen distribution S(TM) re-
spectively are related by AN = ϕA∗

ξ , or equivalently,

(3.7) C(X,PY ) = ϕB(X,PY ), ∀X,Y ∈ Γ(TM).

Theorem 3.2. Let M be a screen homothetic lightlike hypersurface of a semi-

Riemannian space form M̄(c) admitting a semi-symmetric metric connection.

Then the Ricci type tensor R(0, 2) is symmetric, the screen distribution S(TM)
is integrable and M is a locally product manifold L × M∗ where L is a null

curve tangent to TM⊥ and M∗ is a leaf of S(TM).

Proof. By using (2.18), (2.24) and the fact AN = ϕA∗
ξ , we show that τ is

closed, i.e., dτ = 0 on TM . Thus R(0, 2) is symmetric. By using (3.7), we show
that C is symmetric on S(TM). Thus, by Theorem 2.1, S(TM) is integrable.
From Note 1, M is locally a product manifold L×M∗, where L is a null curve
and M∗ is a leaf of the screen distribution S(TM). �

Theorem 3.3. Let M be a screen homothetic lightlike hypersurface of a semi-

Riemannian manifold M̄(c) admitting a semi-symmetric metric connection.

Then we have c = 0.

Proof. Using (2.16), (2.24) and the facts M̄ = M̄(c) and τ = 0, we have

(3.8) (∇XB)(Y, Z)− (∇Y B)(X,Z) = π(X)B(Y, Z)− π(Y )B(X,Z)

for all X, Y, Z ∈ Γ(TM). Using (2.17), (2.20), (3.7) and (3.8), we have

(3.9) (Xϕ)B(Y, PZ)− (Y ϕ)B(X,PZ) = c{g(Y, PZ)η(X)− g(X, PZ)η(Y )}

for all X, Y, Z ∈ Γ(TM). Replace Y by ξ in this equation, we obtain

(3.10) (ξϕ)B(X,PZ) = cg(X,PZ).

Assume that M is screen homothetic. By (3.10), we have c = 0. �

4. Einstein lightlike hypersurfaces

In this section, let M be a screen homothetic Einstein lightlike hypersur-
face equipped with the canonical null pair {ξ,N} of a Lorentzian space form
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(M̄m+2(c), ḡ) admitting a semi-symmetric metric connection. Under this hy-
pothesis, we show that S(TM) is integrable by Theorem 3.2 and c = 0 by
Theorem 3.3. Using (3.5), (3.6) and M is Einstein, we obtain

r = Ric(ξ, ξ) +

m∑

a=1

ǫaRic(Wa,Wa) = κ{g(ξ, ξ) +

m∑

a=1

ǫa g(Wa,Wa)} = κm.

Thus we have

Ric(X,Y ) = (r/m)g(X,Y )

which provides a geometric interpretation of lightlike Einstein hypersurfaces
(same as in Riemannian case) as we have shown that the constant κ = r/m.
Since ξ is an eigenvector field of A∗

ξ corresponding to the eigenvalue 0 due

to (2.14) and A∗
ξ is S(TM)-valued real self-adjoint operator, A∗

ξ have m real

orthonormal eigenvector fields in S(TM) and is diagonalizable. Consider a
frame field of eigenvectors {ξ, E1, . . . , Em} of A∗

ξ such that {E1, . . . , Em} is

an orthonormal frame field of S(TM). Then we have

A∗
ξEi = λiEi, 1 ≤ i ≤ m.

Since M is screen homothetic and Ric = κg, the equation (3.5) reduce to

(4.1) g(A∗
ξX,A∗

ξY )− s g(A∗
ξX,Y ) + ϕ−1κ g(X,Y ) = 0,

where s = trA∗
ξ . Put X = Y = Ei in (4.1), each λi is a solution of the equation

(4.2) x2 − s x+ ϕ−1κ = 0.

The equation (4.2) has at most two distinct solutions which are smooth real
valued functions on U . Assume that there exists p ∈ {0, 1, . . . , m} such that
λ1 = · · · = λp = ρ and λp+1 = · · · = λm = σ, by renumbering if necessary.
From (4.2), we have

(4.3) s = ρ+ σ = pρ+ (m− p)σ, ρσ = ϕ−1κ.

Since ϕ and κ are constants, ρσ is a constant. From this result and the equation

(4.4) (p− 1)ρ = −(m− p− 1)σ,

we show that the functions ρ and σ are constants.

Theorem 4.1. Let M be a screen homothetic Einstein lightlike hypersurface

of a Lorentzian space form (M̄(c), ḡ) admitting a semi-symmetric metric con-

nection. Then M is locally a product manifold L×Mρ×Mσ, where L is a null

curve tangent to TM⊥, and Mρ and Mσ are totally umbilical leaves of some

integerable distributions of M .

Proof. If (4.2) has only one solution ρ, by Theorem 3.2, we show that M =
L ×M∗ ∼= L ×M∗ × {x} for any x ∈ M , where M∗ = Mρ. Since B(X,Y ) =
g(A∗

ξX,Y ) = ρg(X,Y ) for all X, Y ∈ Γ(TM), M is totally umbilical. By

(3.7), we get C(X,PY ) = ϕρ g(X,PY ) for all X, Y ∈ Γ(TM). Thus M∗ is
also totally umbilical. Thus this theorem is true. �
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Assume that (4.2) has exactly two distinct solutions ρ and σ. In case p = 0
or p = m: We also show that M = L × M∗ ∼= L ×M∗ × {x} for any x ∈ M
and M∗ = Mρ or Mσ. M and M∗ are also totally umbilical. In this case,
this theorem is also true. In case 0 < p < m: Consider the following four
distributions Dρ, Dσ, D

s
ρ and Ds

σ on M ;

Dρ = {X ∈ Γ(TM) | A∗
ξX = ρPX}, Ds

ρ = PDρ,

Dσ = {U ∈ Γ(TM) | A∗
ξU = σPU}, Ds

σ = PDσ.

Clearly we show that Dρ ∩Dσ = TM⊥ and Ds
ρ ∩Ds

σ = {0}.

Step 1. If Dρ 6= Dσ, then Dρ⊥g
Dσ and Dρ⊥B

Dσ.

For any X ∈ Γ(Dρ) and U ∈ Γ(Dσ), we get A∗
ξPX = A∗

ξX = ρPX and
A∗

ξPU = A∗
ξU = σPU . This imply that the projection morphism P maps

Γ(Dρ) onto Γ(Ds
ρ) and Γ(Dσ) onto Γ(Ds

σ). Since PX and PU are eigenvec-
tor fields of the real self-adjoint operator A∗

ξ corresponding to the different

eigenvalues ρ and σ respectively, we have g(PX, PU) = 0. From the facts
g(X,U) = g(PX,PU) = 0 and B(X,U) = g(A∗

ξX,U) = ρg(PX,PU) = 0, we
show that Dρ⊥g

Dσ and Dρ⊥B
Dσ respectively.

Step 2. If Dρ 6= Dσ, then S(TM) = Ds
ρ ⊕orth Ds

σ.

Since {Ei}1≤i≤p and {Ea}p+1≤a≤m are vector fields of Ds
ρ and Ds

σ respec-
tively and Ds

ρ and Ds
σ are mutually orthogonal vector subbundle of S(TM),

Ds
ρ and Ds

σ are non-degenerate distributions of rank p and rank (m − p) re-
spectively. Thus S(TM) = Ds

ρ ⊕orth Ds
σ.

Step 3. Im(A∗
ξ − ρP ) ⊂ Γ(Ds

σ) and Im(A∗
ξ − σP ) ⊂ Γ(Ds

ρ).

From (4.1), we show that (A∗
ξ)

2−(ρ+σ)A∗
ξ+ρσP = 0. Let Y ∈ Im(A∗

ξ−ρP ),

then there existsX ∈ Γ(TM) such that Y = (A∗
ξ−ρP )X . Then (A∗

ξ−σP )Y = 0

and Y ∈ Γ(Dσ). Thus Im(A∗
ξ − ρP ) ⊂ Γ(Dσ). Since the morphism A∗

ξ − ρP

maps Γ(TM) onto Γ(S(TM)), we have Im(A∗
ξ − ρP ) ⊂ Γ(Ds

σ). By duality, we

also have Im(A∗
ξ − σP ) ⊂ Γ(Ds

ρ).

Step 4. Ds
ρ and Ds

σ are integrable distributions.

For X, Y ∈ Γ(Dρ) and U ∈ Γ(Dσ), using (2.8), (2.12) and Step 1, we have

(∇XB)(Y, U) = − g((A∗
ξ − ρP )∇XY, U) + ρB(X,Y )η(U).

Replacing Z by U to (3.8) and using Step 1, we have (∇XB)(Y, U) = (∇Y B)
(X,U). From this results, (2.10) and Step 1, we have g((A∗

ξ − ρP )[X,Y ], U) =

0. Since Ds
σ is non-degenerate and Im(A∗

ξ − ρP ) ⊂ Γ(Ds
σ), we have (A∗

ξ −

ρP )[X,Y ] = 0. Thus [X,Y ] ∈ Γ(Dρ) and Dρ is integrable. By duality, Dσ

is also integrable. For any X, Y ∈ Γ(Ds
ρ), since Dρ is integrable, we have

[X,Y ] ∈ Γ(Dρ). Also since S(TM) is integrable, [X,Y ] ∈ Γ(S(TM)). This
results imply [X,Y ] ∈ Γ(Ds

ρ). Thus D
s
ρ is integrable. By duality, so is Ds

σ.
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Step 5. ρπ(X) = σπ(X) = 0 for all X ∈ Γ(S(TM)).

For X, Y ∈ Γ(Ds
ρ), using (2.8), (2.12) and the fact ρ is a constant, we have

(∇XB)(Y, Z) = −g((A∗
ξ − ρP )∇XY, Z) + ρB(X,Y )η(Z)

for any Z ∈ Γ(TM). Using this equation, (2.10), (3.8) and the facts (A∗
ξ −

ρP )[X, Y ] = 0 and (A∗
ξ − ρP )X = 0 for any X ∈ Γ(Dρ), we obtain

ρπ(X)g(Y, Z) = ρπ(Y )g(X,Z).

Taking Z ∈ Γ(S(TM)) and using S(TM) is non-degenerate, we have ρπ(X)Y =
ρπ(Y )X . Suppose there exists a vector fieldXo ∈ Γ(Ds

ρ) such that ρπ(Xo)x 6= 0
at each point x ∈ M , then X = fXo for any X ∈ Γ(Ds

ρ), where f is a smooth
function. It follows that all vectors from the fiber (Ds

ρ)x are colinear with
(Xo)x. It is a contradiction as dim (Ds

ρ)x = p > 1. Thus we have ρπ|Ds
ρ
= 0.

Using this result and (4.4), we have σπ|Ds
ρ
= 0. By duality, we also have

σπ|Ds
σ
= 0. By using (4.4), we have ρπ|Ds

σ
= 0. Thus we have our assertion.

Step 6. Ds
ρ and Ds

σ are auto-parallel distributions.

For all X ∈ Γ(Ds
ρ) and U ∈ Γ(Ds

σ), using (2.8), (2.12), the definition of Dρ

and Dσ and the fact that ρ and σ are constants, we have

(∇XB)(U,Z) = −g((A∗
ξ − σP )∇XU, Z),

(∇UB)(X,Z) = −g((A∗
ξ − ρP )∇UX, Z),

for all Z ∈ Γ(S(TM)). Using this results, (3.8) and Step 5, we obtain

g({(A∗
ξ − σP )∇XU − (A∗

ξ − ρP )∇UX}, Z) = 0.

Using Step 3 and the fact S(TM) is non-degenerate, we get

(A∗
ξ − σP )∇XU = (A∗

ξ − ρP )∇UX.

As the left term of this equation is in Γ(Ds
ρ) and the right term is in Γ(Ds

σ),
and Ds

ρ ∩ Ds
σ = {0}, we have (A∗

ξ − σP )∇XU = 0 and (A∗
ξ − ρP )∇UX = 0.

This imply ∇XU ∈ Γ(Dσ) and ∇UX ∈ Γ(Dρ). From the facts ∇XU = ∇∗
XU

and ∇UX = ∇∗
UX by Step 1, we have

(4.5) ∇XU ∈ Γ(Ds
σ), ∇UX ∈ Γ(Ds

ρ), ∀X ∈ Γ(Ds
ρ), ∀U ∈ Γ(Ds

σ).

For X, Y ∈ Γ(Ds
ρ) and U, V ∈ Γ(Ds

σ), since g(X,U) = 0, we have

g(∇Y X,U) + g(X,∇Y U) = 0, g(∇V U,X) + g(U,∇V X) = 0.

Using (4.5) and Step 1, we have g(X,∇Y U) = g(U,∇V X) = 0. Thus we get

(4.6) g(∇Y X, U) = 0, g(X, ∇V U) = 0.

This results imply that Ds
ρ and Ds

σ are auto-parallel distributions.

Since the leaf M∗ of S(TM) is a Riemannian manifold and S(TM) =
Ds

ρ ⊕orth Ds
σ, where Ds

ρ and Ds
σ are auto-parallel distributions with respect

to the induced connection ∇∗ on M∗ by Step 6, by the decomposition theorem
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of de Rham [2], we have M∗ = Mρ ×Mσ, where Mρ and Mσ are leaves of Ds
ρ

and Ds
σ respectively. Thus we have our theorem.

Theorem 4.2. Let M be a screen homothetic Einstein lightlike hypersurface of

a Lorentzian space form (M̄(c), ḡ) admitting a semi-symmetric metric connec-

tion. Then c = 0 and M is locally a product manifold L×Mρ×Mσ, where L is

a null curve tangent to TM⊥, and Mρ and Mσ are leaves of some integerable

distributions of M such that

(1) If κ 6= 0, Mρ or Mσ is an m-dimensional totally umbilical Einstein

Riemannian space form which is isometric to a sphere or a hyperbolic

space according to the sign of κ, and the other is a point.

(2) If κ = 0, Mρ is an (m − 1)-dimensional or an m-dimensional totally

geodesic Euclidean space and Mσ is a spacelike curve or a point.

Proof. First of all, we prove if 0 < p < m, then κ = 0. Moreover ρσ = 0: For
X ∈ Γ(Ds

ρ) and U ∈ Γ(Ds
σ), using (2.10), (4.5), (4.6) and Step 5, we have

g(R(X,U)U, X) = g(∇X∇UU, X).

From the second equation of (4.6), we know that ∇UU has no component of
Dρ. Since P maps Γ(Dσ) onto Γ(Ds

σ) and S(TM) = Ds
ρ ⊕orth Ds

σ, we have

∇UU = P (∇UU) + η(∇UU)ξ, P (∇UU) ∈ Γ(Ds
σ).

Using (2.6), (2.12), (3.7) and the facts A∗
ξX = ρX and A∗

ξU = σU , we have

∇X∇UU = ∇XP (∇UU) +X(η(∇UU))ξ − ϕρσg(U,U)PX.

Due to (4.5)1, we show that g(∇XP (∇UU), X) = 0. From the above results
we deduce

g(R(X,U)U, X) = −ϕρσg(X,X)g(U,U).

On the other hand, from the Gauss equation (2.15), we have

g(R(X,U)U, X) = ϕρσg(X,X)g(U,U).

From the last two equations, we show that if 0 < p < m, then κ = ϕρσ = 0.

(1) Let κ 6= 0 : In case (trA∗
ξ)

2 6= 4ϕ−1κ. The equation (4.2) has two non-
vanishing distinct solutions ρ and σ. If 0 < p < m, then we have κ = 0. Thus
p = 0 or p = m. If p = 0, then Ds

ρ = {0} and Ds
σ = S(TM). If p = m, then

Ds
ρ = S(TM) and Ds

σ = {0}. From (2.15) and (2.19), we have

R∗(X,Y )Z = 2ϕρ2{g(Y, Z)X − g(X, Z)Y }, ∀ X, Y, Z ∈ Γ(Dρ);

R∗(U, V )W = 2ϕσ2{g(V, W )U − g(U, W )V }, ∀ U, V, W ∈ Γ(Dσ).

Thus either Mρ or Mσ (which are leaves of Dρ and Dσ respectively) is a Rie-
mannian manifold M∗ of constant curvature either 2ϕρ2 or 2ϕσ2, and the other
leaf is a point {x}. If M∗ = Mρ, for all X, Y ∈ Γ(S(TM)), since B(X,Y ) =
ρg(X,Y ), we haveC(X,Y ) = ϕρg(X,Y ) and Ric∗(X,Y ) = 2(m−1)ϕρg(X,Y ).
If M∗ = Mσ, for all U, V ∈ Γ(S(TM)), since B(U, V ) = σg(U, V ), we have
C(U, V ) = ϕσg(U, V ) and Ric∗(U, V ) = 2(m − 1)ϕσg(U, V ). Thus M∗ is
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a totally umbilical and M is locally a product manifold L × M∗ × {x} or
L× {x} × M∗, where M∗ is an m-dimensional totally umbilical Einstein Rie-
mannian space form of constant curvature 2ϕσ2 or 2ϕρ2 which is isometric to
a sphere or a hyperbolic space, {x} is a point.

In case (trA∗
ξ )

2 = 4ϕ−1κ. The equation (4.2) has only one non-zero constant
solution, named by ρ, and ρ is only one eigenvalue of A∗

ξ . In this case, the

equations (4.3) reduce to s = 2ρ = mρ ; ρ2 = ϕ−1κ. Thus we have m = 2.
From (2.15) and (2.19), we have

R∗(X,Y )Z = 2κ{g(Y, Z)X − g(X,Z)Y }, ∀X, Y, Z ∈ Γ(S(TM)).

Thus M∗ is a Riemannian 2-surface of constant curvature 2κ. Since B(X,Y ) =
ρg(X,Y ) for all X, Y ∈ Γ(TM), we have C(X,Y ) = ϕρg(X,Y ) for all X, Y ∈
Γ(S(TM)). Thus M∗ is a totally umbilical and M is a locally product L ×
M∗×{x} where L is a null curve and M∗ is a Riemannian 2-surface of constant
curvature 2κ which is isometric to a 2-sphere or a 2-hyperbolic space.

(2) Let κ = 0: The equation (4.2) reduces to x(x− s) = 0. In case trA∗
ξ 6= 0.

Let ρ = 0 and σ = s. From (4.4), we have (m − p − 1)s = 0. So p = m − 1.
Thus the leaf Mρ of Ds

ρ is totally geodesic (m − 1)-dimensional Riemannian
manifold and the leafMσ of Ds

σ is a spacelike curve. In the sequel, let X,Y, Z ∈
Γ(Ds

ρ) and U ∈ Γ(Ds
σ). From (2.15), (2.19) and c = 0, we have R∗(X,Y )Z =

R(X,Y )Z = R̄(X,Y )Z = 0. Using (4.6) and the fact ∇∗ is metric, we have

g(∇∗
XY, U) = −g(Y, ∇∗

XU) = −g(Y, ∇XU) = 0.

Thus ∇∗
XY ∈ Γ(Ds

ρ). From this result, (2.6), (4.5) and the integrable prop-
erty of Ds

ρ, we have g(R∗(X,Y )Z,U) = 0. This implies QρR
∗(X,Y )Z =

R∗(X,Y )Z = 0, where Qρ is the projection morphism of Γ(S(TM)) on Γ(Ds
ρ)

and QρR
∗ is the curvature tensor of Ds

ρ. Thus Mρ is a Euclidean manifold
and M is locally a product L×Mρ ×Mσ, where Mρ is an (m− 1)-dimensional
totally geodesic Euclidean space and Mσ is a spacelike curve in M .

In case trA∗
ξ = 0. Then we have ρ = σ = 0 and A∗

ξ = 0 or equivalently

B = 0 and Ds
ρ = Ds

σ = S(TM). Thus M is totally totally geodesic in M̄ .
Since M is screen homothetic, we also have C = AN = 0. Thus the leaf M∗ of
S(TM) is also totally geodesic. Thus we have ∇̄XY = ∇∗

XY for any tangent
vector fields X and Y to the leaf M∗. This implies that M∗ is a Euclidean
m-space. Thus M is locally a product L ×M∗ × {x} where L is a null curve
and {x} is a point. �
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