LIGHTLIKE HYPERSURFACES OF A LORENTZ MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

Dae Ho Jin

Abstract

In this paper, we study lightlike hypersurfaces M of a Lorentz manifold \bar{M} with a semi-symmetric non-metric connection subject to the conditions; (1) the screen distribution $S(T M)$ is totally geodesic in M, and (2) the second fundamental form B of M is parallel.

1. Introduction

The notion of semi-symmetric non-metric connection on Riemannian manifolds was introduced by Ageshe and Chafle. In [1], they studied some properties of the curvature tensor of a Riemannian manifold endowed with a semisymmetric non-metric connection. In [2], they gave basic properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection. Yasar, Cöken and Yücesan [6] studied lightlike hypersurfaces in a semi-Riemannian manifold endowed with a semi-symmetric non-metric connection. They found the condition that the Ricci type tensor of a lightlike hypersurface of such a semi-Riemannian manifold be symmetric.

In this paper, we study lightlike hypersurfaces M of a Lorentz manifold \bar{M} endowed with a semi-symmetric non-metric connection subject to the conditions; (1) the screen distribution $S(T M)$ is totally geodesic in M, and (2) the second fundamental form B of M is parallel. We prove the following result:

Theorem 1.1. Let M be a lightlike hypersurface of a Lorentz manifold \bar{M} admitting a semi-symmetric non-metric connection. If the screen distribution $S(T M)$ is totally geodesic in M and the second fundamental form B of M is parallel, then M is locally a product manifold $L \times M_{o} \times M_{\lambda}$, where L is a null curve tangent to the radical distribution $\operatorname{Rad}(T M)$, and M_{o} and M_{λ} are leaves of some integrable distributions of M.

[^0]
2. Semi-symmetric non-metric connection

Let (\bar{M}, \bar{g}) be a semi-Riemannian manifold. A connection $\bar{\nabla}$ on \bar{M} is called a semi-symmetric non-metric connection [1] if $\bar{\nabla}$ and its torsion tensor \bar{T} satisfy

$$
\begin{gather*}
\left(\bar{\nabla}_{X} \bar{g}\right)(Y, Z)=-\pi(Y) \bar{g}(X, Z)-\pi(Z) \bar{g}(X, Y) \tag{2.1}\\
\bar{T}(X, Y)=\pi(Y) X-\pi(X) Y \tag{2.2}
\end{gather*}
$$

for any vector fields X, Y and Z on \bar{M}, where π is a 1-form associated with a non-zero vector field ζ by $\pi(X)=\bar{g}(X, \zeta)$.

Let (M, g) be a lightlike hypersurface of a semi-Riemannian manifold (\bar{M}, \bar{g}) with a semi-symmetric non-metric connection. Then the normal bundle $T M^{\perp}$ of M is a vector subbundle of $T M$ of rank 1 and coincides the radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ of M. Hence the degenerate metric g on M induced by the semi-Riemannian metric \bar{g} has constant rank $\operatorname{dim} M-1$. A complementary vector bundle $S(T M)$ of $\operatorname{Rad}(T M)$ in $T M$ is non-degenerate distribution on M, which is called a screen distribution on M [4], such that

$$
T M=\operatorname{Rad}(T M) \oplus_{o r t h} S(T M)
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a lightlike hypersurface by $M=(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. It is well-known [4] that, for any null section ξ of $\operatorname{Rad}(T M)$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section N of a unique vector bundle $\operatorname{tr}(T M)$ in $S(T M)^{\perp}$ satisfying

$$
\bar{g}(\xi, N)=1, \quad \bar{g}(N, N)=\bar{g}(N, X)=0, \quad \forall X \in \Gamma(S(T M)) .
$$

We call $\operatorname{tr}(T M)$ and N the transversal vector bundle and the null transversal vector field with respect to $S(T M)$ respectively. Then $T \bar{M}$ is decomposed as

$$
T \bar{M}=T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M)
$$

In the sequel, let X, Y, Z and W be the vector fields on M, unless otherwise specified. Let P be the projection morphism of $T M$ on $S(T M)$. Then the local Gauss and Weingartan formulas of M and $S(T M)$ are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N \tag{2.3}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N \tag{2.4}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{2.5}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\sigma(X) \xi \tag{2.6}
\end{align*}
$$

where ∇ and ∇^{*} are the induced linear connections on $T M$ and $S(T M)$ respectively, B and C are the local second fundamental forms on $T M$ and $S(T M)$ respectively, A_{N} and A_{ξ}^{*} are the shape operators on $T M$ and $S(T M)$ respectively, and τ and σ are 1-forms on $T M$.

Using (2.1), (2.2) and (2.3), we show that

$$
\begin{align*}
\left(\nabla_{X} g\right)(Y, Z) & =B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{2.7}\\
& -\pi(Y) g(X, Z)-\pi(Z) g(X, Y) \\
T(X, Y)= & \pi(Y) X-\pi(X) Y \tag{2.8}
\end{align*}
$$

and B is symmetric on $T M$, where T is the torsion tensor with respect to the induced connection ∇ and η is a 1 -form on $T M$ such that

$$
\eta(X)=\bar{g}(X, N)
$$

From the fact $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$, we know that B is independent of the choice of a screen distribution. Taking $Y=\xi$ to this and using (2.1), we get

$$
\begin{equation*}
B(X, \xi)=0 \tag{2.9}
\end{equation*}
$$

The local second fundamental forms are related to their shape operators by

$$
\begin{array}{lr}
g\left(A_{\xi}^{*} X, Y\right)=B(X, Y)-\lambda g(X, Y), \quad \bar{g}\left(A_{\xi}^{*} X, N\right)=0, \\
g\left(A_{N} X, P Y\right)=C(X, P Y)-\mu g(X, P Y)-\pi(P Y) \eta(X), \tag{2.11}\\
\bar{g}\left(A_{N} X, N\right)=-\mu \eta(X), \quad \sigma(X)=\tau(X)-\lambda \eta(X),
\end{array}
$$

where $\lambda=\pi(\xi)$ and $\mu=\pi(N)$ are smooth functions. By (2.10), we show that A_{ξ}^{*} is $S(T M)$-valued self-adjoint shape operators related to B and satisfies

$$
\begin{equation*}
A_{\xi}^{*} \xi=0 . \tag{2.12}
\end{equation*}
$$

Remark 1. We say that $S(T M)$ is totally geodesic [4] in M if $C=0$. In this case, from (2.5), (2.6) and (2.12), we show that $\operatorname{Rad}(T M)$ and $S(T M)$ are parallel distributions on M. Thus, by the decomposition theorem of de Rham [3], M is locally a product manifold $L \times M^{*}$ where L is a null curve tangent to $\operatorname{Rad}(T M)$ and M^{*} is a leaf of $S(T M)$.

3. Proof of Theorem 1.1

Under the hypothesis, we show that $S(T M)$ is a Riemannian vector bundle. By Remark $1, M$ is locally a product manifold $L \times M^{*}$, where L is a null curve tangent to $\operatorname{Rad}(T M)$ and M^{*} is a leaf of $S(T M)$. Applying ∇_{X} to $B(Y, \xi)=0$ and using (2.6), (2.9) and (2.10), we have

$$
\begin{equation*}
g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)=\lambda g\left(A_{\xi}^{*} X, Y\right) \tag{3.1}
\end{equation*}
$$

By (2.12), ξ is an eigenvector field of A_{ξ}^{*} corresponding to the eigenvalue 0 . As A_{ξ}^{*} is $S(T M)$-valued real self-adjoint operator, A_{ξ}^{*} have m real orthonormal eigenvector fields in $S(T M)$ and is diagonalizable. Consider a frame field of eigenvectors $\left\{\xi, E_{1}, \ldots, E_{m}\right\}$ of A_{ξ}^{*} such that $\left\{E_{1}, \ldots, E_{m}\right\}$ is an orthonormal frame field of $S(T M)$ and $A_{\xi}^{*} E_{i}=\lambda_{i} E_{i}$ for each i. Put $X=Y=E_{i}$ in (3.1), each λ_{i} is a solution of the equation

$$
\begin{equation*}
x^{2}-\lambda x=0 \tag{3.2}
\end{equation*}
$$

(3.2) has at most two distinct solutions 0 and λ. Assume that there exists $p \in\{0,1, \ldots, m\}$ such that $\lambda_{1}=\cdots=\lambda_{p}=0$ and $\lambda_{p+1}=\cdots=\lambda_{m}=\lambda$, by renumbering if necessary.

Case 1. $p=0$ or $p=m$: As $S(T M)$ is totally geodesic, we have $M=$ $L \times M^{*} \cong L \times M^{*} \times\{x\}$ for any $x \in M$, where $M^{*}=M_{o}$ and $M_{\lambda}=\{x\}$. Thus this theorem is true.

Case 2. $0<p<m$: Consider the distributions $D_{o}, D_{\lambda}, D_{o}^{s}$ and D_{λ}^{s} on M;

$$
\begin{array}{ll}
D_{o}=\left\{X \in \Gamma(T M) \mid A_{\xi}^{*} X=0 \text { and } P X \neq 0\right\}, & D_{o}^{s}=P D_{o} \\
D_{\lambda}=\left\{U \in \Gamma(T M) \mid A_{\xi}^{*} U=\lambda P U \text { and } P U \neq 0\right\}, & D_{\lambda}^{s}=P D_{\lambda}
\end{array}
$$

Clearly we show that $D_{o} \cap D_{\lambda}=\{0\}$ and $D_{o}^{s} \cap D_{\lambda}^{s}=\{0\}$ as $\lambda \neq 0$.
For any $X \in \Gamma\left(D_{o}\right)$ and $U \in \Gamma\left(D_{\lambda}\right)$, we get $A_{\xi}^{*} P X=A_{\xi}^{*} X=0$ and $A_{\xi}^{*} P U=$ $A_{\xi}^{*} U=\lambda P U$. This imply $P X \in \Gamma\left(D_{o}^{s}\right)$ and $P U \in \Gamma\left(D_{\lambda}^{s}\right)$. Thus P maps $\Gamma\left(D_{o}\right)$ onto $\Gamma\left(D_{o}^{s}\right)$ and $\Gamma\left(D_{\lambda}\right)$ onto $\Gamma\left(D_{\lambda}^{s}\right)$. Since $P X$ and $P U$ are eigenvector fields of the real self-adjoint operator A_{ξ}^{*} corresponding to the different eigenvalues 0 and λ respectively, we have $g(P X, P U)=0$. From the facts $g(X, U)=$ $g(P X, P U)=0$ and $B(X, U)=g\left(A_{\xi}^{*} X, U\right)+\lambda g(X, U)=\lambda g(X, U)=0$, we show that $D_{o} \perp_{g} D_{\lambda}$ and $D_{o} \perp_{B} D_{\lambda}$ respectively.

Since $\left\{E_{i}\right\}_{1 \leq i \leq p}$ and $\left\{E_{a}\right\}_{p+1 \leq a \leq m}$ are vector fields of D_{o}^{s} and D_{λ}^{s} respectively and D_{o}^{s} and D_{λ}^{s} are mutually orthogonal vector subbundle of $S(T M), D_{o}^{s}$ and D_{λ}^{s} are non-degenerate distributions of rank p and $\operatorname{rank}(m-p)$ respectively. Thus $S(T M)=D_{o}^{s} \oplus_{\text {orth }} D_{\lambda}^{s}$.

From (3.1), we show that $A_{\xi}^{*}\left(A_{\xi}^{*}-\lambda P\right)=\left(A_{\xi}^{*}-\lambda P\right) A_{\xi}^{*}=0$. Let $Y \in$ $\operatorname{Im} A_{\xi}^{*}$, then there exists $X \in \Gamma(T M)$ such that $Y=A_{\xi}^{*} X$. Then we have $\left(A_{\xi}^{*}-\lambda P\right) Y=0$ and $Y \in \Gamma\left(D_{\lambda}\right)$. Thus $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(D_{\lambda}\right)$. Since the morphism A_{ξ}^{*} maps $\Gamma(T M)$ onto $\Gamma(S(T M))$, we have $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(D_{\lambda}^{s}\right)$. By duality, we also have $\operatorname{Im}\left(A_{\xi}^{*}-\lambda P\right) \subset \Gamma\left(D_{o}^{s}\right)$.

For any $X, Y \in \Gamma\left(D_{o}\right)$ and $U, V \in \Gamma\left(D_{\lambda}\right)$, applying ∇_{X} to $B(U, V)=$ $2 \lambda g(U, V)$ and ∇_{U} to $B(X, Y)=\lambda g(X, Y)$ and then, using (2.7), (2.10) and the facts $\nabla B=0$ and $D_{o} \perp_{g} D_{\lambda} ; D_{o} \perp_{B} D_{\lambda}$, we have $(X \lambda) g(U, V)=0$ and $(U \lambda) g(X, Y)=0$, i.e., $X \lambda=0$ and $U \lambda=0$. This imply $Z \lambda=0$ for all $Z \in \Gamma\left(D_{o} \oplus_{\text {orth }} D_{\lambda}\right)$. Thus λ is a constant on $S(T M)$.

For any $X, Y, Z \in \Gamma\left(D_{o}^{s}\right)$, applying ∇_{Z} to $B(X, Y)=\lambda g(X, Y)$ and using (2.7), (2.10) and the facts $\nabla B=0$ and λ is a constant on $S(T M)$, we have $\left(\nabla_{z} g\right)(X, Y)=0$, i.e.,

$$
\begin{equation*}
\pi(X) g(Y, Z)+\pi(Y) g(X, Z)=0 \tag{3.3}
\end{equation*}
$$

Using this and the fact D_{o}^{s} is non-degenerate, we have

$$
\begin{equation*}
\pi(X) Y=-\pi(Y) X \tag{3.4}
\end{equation*}
$$

Taking the skew-symmetric part of (3.3) for X and Z, we get $\pi(X) g(Y, Z)=$ $\pi(Z) g(X, Y)$, from which we have

$$
\begin{equation*}
\pi(X) Y=\pi(Y) X \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.6), we obtain $\pi(X)=0$ for all $X \in \Gamma\left(D_{o}^{s}\right)$. By duality, we have $\pi(U)=0$ for all $U \in \Gamma\left(D_{\lambda}^{s}\right)$. Thus $\pi=0$ on $S(T M)$ and $\nabla_{X} g=0$ for all $X \in \Gamma(S(T M))$.

For any $X, Y \in \Gamma\left(D_{o}^{s}\right)$ and $U, V \in \Gamma\left(D_{\lambda}^{s}\right)$, applying ∇_{X} to $B(Y, U)=0$ and ∇_{V} to $B(Y, U)=0$ and then, using (2.7), (2.10) and the facts $\nabla B=0$ and $\nabla_{x} g=0$ for all $X \in \Gamma(S(T M))$, we have

$$
g\left(A_{\xi}^{*} \nabla_{X} Y, U\right)=0, \quad g\left(\left(A_{\xi}^{*}-\lambda P\right) \nabla_{V} U, Y\right)=0
$$

Since D_{λ}^{s} is non-degenerate and $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(D_{\lambda}^{s}\right)$, we have $A_{\xi}^{*} \nabla_{X} Y=0$. Thus $\nabla_{X} Y \in \Gamma\left(D_{o}\right)$. By duality, we have $\nabla_{V} U \in \Gamma\left(D_{\lambda}\right)$. As $S(T M)$ is totally geodesic in M, this results imply that $\nabla_{X} Y \in \Gamma\left(D_{o}^{s}\right)$ for all $X, Y \in \Gamma\left(D_{o}^{s}\right)$ and $\nabla_{V} U \in \Gamma\left(D_{\lambda}^{s}\right)$ for all $U, V \in \Gamma\left(D_{\lambda}^{s}\right)$. Thus D_{o}^{s} and D_{λ}^{s} are integrable and auto-parallel distributions.

Since the leaf M^{*} of $S(T M)$ is a Riemannian manifold and $S(T M)=$ $D_{o}^{s} \oplus_{\text {orth }} D_{\lambda}^{s}$, where D_{o}^{s} and D_{λ}^{s} are auto-parallel distributions with respect to the induced connection ∇ on $S(T M)$, by the decomposition theorem of de Rham [3], we have $M^{*}=M_{o} \times M_{\lambda}$, where M_{o} and M_{λ} are leaves of D_{o}^{s} and D_{λ}^{s} respectively. Thus we have Theorem 1.1.

Concluding remark. Let M be a half lightlike submanifold [5] of a Lorentz manifold \bar{M} with a semi-symmetric non-metric connection subject to the conditions; (1) the screen distribution $S(T M)$ is totally geodesic in M and (2) the second fundamental form B of M is parallel. Then, by a procedure same as for Theorem 1.1 from the structure equations

$$
\begin{aligned}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N+D(X, Y) L \\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N+\rho(X) L \\
& \bar{\nabla}_{X} L=-A_{L} X+\phi(X) N \\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\sigma(X) \xi \\
& \left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \\
& \quad \quad-\pi(Y) g(X, Z)-\pi(Z) g(X, Y) \\
& \quad T(X, Y)=\pi(Y) X-\pi(X) Y, \\
& B(X, \xi)=0, \quad D(X, \xi)=-\epsilon \phi(X), \\
& g\left(A_{\xi}^{*} X, Y\right)=B(X, Y)-\lambda g(X, Y), \quad \bar{g}\left(A_{\xi}^{*} X, N\right)=0,
\end{aligned}
$$

the following result will be established:

Theorem 3.1. Let M be a half lightlike submanifold of a Lorentz manifold \bar{M} admitting a semi-symmetric non-metric connection. If the screen distribution $S(T M)$ is totally geodesic in M and the lightlike second fundamental form B of M is parallel, then M is locally a product manifold $L \times M_{o} \times M_{\lambda}$, where L is a null curve tangent to the radical distribution $\operatorname{Rad}(T M)$, and M_{o} and M_{λ} are leaves of some integrable distributions of M.

References

[1] N.S. Ageshe and M.R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., vol. 23(6), 1992, 399-409.
[2] N.S. Ageshe and M.R. Chafle, On submanifolds of a Riemannian manifold with semisymmetric non-metric connection, Tensor, N. S., vol. 55, 1994, 120-130.
[3] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comm. Math. Helv. 26, 1952, 328-344.
[4] K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[5] K.L. Duggal and D.H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ., 22, 1999, 121-161.
[6] E. Yasar, A.C. Cöken and A. Yücesan, Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102, 2008, 253-264.

Department of Mathematics
Dongguk University
Gyeonguu 780-714, Republic of Korea
E-mail address: jindh@dongguk.ac.kr

[^0]: Received July 11, 2014; Accepted November 24, 2014.
 2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
 Key words and phrases. lightlike hypersurface, Lorentz manifold with semi-symmetric non-metric connection, totally geodesic screen distribution.

