• Title/Summary/Keyword: semi-random variable

Search Result 19, Processing Time 0.021 seconds

Sign Language Spotting Based on Semi-Markov Conditional Random Field (세미-마르코프 조건 랜덤 필드 기반의 수화 적출)

  • Cho, Seong-Sik;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1034-1037
    • /
    • 2009
  • Sign language spotting is the task of detecting the start and end points of signs from continuous data and recognizing the detected signs in the predefined vocabulary. The difficulty with sign language spotting is that instances of signs vary in both motion and shape. Moreover, signs have variable motion in terms of both trajectory and length. Especially, variable sign lengths result in problems with spotting signs in a video sequence, because short signs involve less information and fewer changes than long signs. In this paper, we propose a method for spotting variable lengths signs based on semi-CRF (semi-Markov Conditional Random Field). We performed experiments with ASL (American Sign Language) and KSL (Korean Sign Language) dataset of continuous sign sentences to demonstrate the efficiency of the proposed method. Experimental results show that the proposed method outperforms both HMM and CRF.

Efficient Strategies to Verify VHDL Model (VHDL 모델의 효율적인 검증 방법)

  • 김강철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.526-529
    • /
    • 2003
  • This paper presents two strategies to refute clock cycles when using stopping rule in VHDL model verification. The first method is that a semi-random variable is defined and the data that stay in the range of semi-random variable are skipped when stopping rule is running. The second one is to keep the old values of parameters when phases are changed. 12 VHDL models are examined to observe the effectiveness of strategies.

  • PDF

Application of Probability Density Function in SFEM and Corresponding Limit Value (추계론적 유한요소해석에서의 확률밀도함수 사용과 수렴치)

  • Noh Hyuk-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.857-864
    • /
    • 2006
  • Due to the difficulties in numerical generation of random fields that satisfy not only the probabilistic distribution but the spectral characteristics as well. it is relatively hard to find an exact response variability of a structural response with a specific random field which has its features in the spatial and spectral domains. In this study. focusing on the fact that the random field assumes a constant over the domain under consideration when the correlation distance tends to infinity, a semi-theoretical solution of response variability is proposed for in-plane and plate bending structures. In this procedure, the probability density function is used directly resulting in a semi-exact solution for the random field in the state of random variable. It is particularly noteworthy that the proposed methodology provides response variability for virtually any type of probability density functions.

  • PDF

Efficient Prediction in the Semi-parametric Non-linear Mixed effect Model

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.225-234
    • /
    • 1999
  • We consider the following semi-parametric non-linear mixed effect regression model : y\ulcorner=f($\chi$\ulcorner;$\beta$)+$\sigma$$\mu$($\chi$\ulcorner)+$\sigma$$\varepsilon$\ulcorner,i=1,…,n,y*=f($\chi$;$\beta$)+$\sigma$$\mu$($\chi$) where y'=(y\ulcorner,…,y\ulcorner) is a vector of n observations, y* is an unobserved new random variable of interest, f($\chi$;$\beta$) represents fixed effect of known functional form containing unknown parameter vector $\beta$\ulcorner=($\beta$$_1$,…,$\beta$\ulcorner), $\mu$($\chi$) is a random function of mean zero and the known covariance function r(.,.), $\varepsilon$'=($\varepsilon$$_1$,…,$\varepsilon$\ulcorner) is the set of uncorrelated measurement errors with zero mean and unit variance and $\sigma$ is an unknown dispersion(scale) parameter. On the basis of finite-sample, small-dispersion asymptotic framework, we derive an absolute lower bound for the asymptotic mean squared errors of prediction(AMSEP) of the regular-consistent non-linear predictors of the new random variable of interest y*. Then we construct an optimal predictor of y* which attains the lower bound irrespective of types of distributions of random effect $\mu$(.) and measurement errors $\varepsilon$.

  • PDF

Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain (개선된 가중적분법과 반무한 영역의 해석)

  • 노혁천;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF

Architecture of an LDPC Decoder for DVB-S2 using reuse Technique of processing units and Memory Relocation (연산기와 메모리 재사용을 이용한 효율적인 DVB-S2 규격의 LDPC 복호기 구조)

  • Park Jae-Geun;Lee Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.31-37
    • /
    • 2006
  • Low-density parity-check (LDPC) codes are recently emerged due to its excellent performance. The standard for European high definition satellite digital video broadcast, DVB-S2 has adopted LDPC codes as a channel coding scheme. This paper proposes a DVB-S2 LDPC decoder architecture using a hybrid parity check matrix which is efficient in hardware implementation for both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the hybrid H-matrix scheme, the architecture of LDPC decoder for DVB-S2 can be very practical and efficient. In addition, we show a new Variable Node processor Unit (VNU) architecture to reuse the VNU for various code rates and optimized block memory placement to reuse. We design a DVB-S2 LDPC decoder of code rate 1/2 usng the proposed architecture. We estimate the performance of the DVB-S2 LDPC decoder and compare it with other decoders.

Efficient Methods for Reducing Clock Cycles in VHDL Model Verification (VHDL 모델 검증의 효율적인 시간단축 방법)

  • Kim, Kang-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.39-45
    • /
    • 2003
  • Design verification of VHDL models is getting difficult and has become a critical and time-consuming process in hardware design. Recent]y the methods using Bayesian estimation and stopping rule have been introduced to verify behavioral models and to reduce clock cycles. This paper presents two strategies to reduce clock cycles when using stopping rule in a VHDL model verification. The first method is that a semi-random variable is defined and the data that stay in the range of semi-random variable are skipped when stopping rule is running. The second one is to keep the old values of parameters when phases of stopping rule are changed. 12 VHDL models are examined to observe the effectiveness of strategies, and the simulation results show that more than about 25% of clock cycles is reduced by using the two proposed strategies with 0.6% losses of branch coverage rate.

A Study of the Optimal Job Assignment for the Different Semi-automatic Machines (이종반자동설비의 최적작업할당연구 -확률적 사이클타임의 경우를 중심으로-)

  • 김광섭;황의철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.133-141
    • /
    • 1987
  • Man-machine assignment problem with random service and processing times is considered in this paper. Assuming heterogeneous semi-automatic machines, the problem is dealt with as follow; 1. For the different type of machines that have probabilistics distribution of processing time and nan service time, man·machine assignment problem is solved by heuristic method using expected time value if machine. 2. Since each related time is a random variable, the performance of the optimal assignment obtained from the above method is verified through monte carlo simulation method. 3. The above procedures are programed by BASIC language to use easily and rapidly in the personal computer. The result of this study can contribute to productivity enhancement by increasing the efficiencies of both operators and machines.

  • PDF

Evaluation of the Performance and Reliability of a Real-time Power System Described by a DES Model using Fuzzy-Random Variables (퍼지-랜덤 변수를 이용한 DES 모델링을 통한 실시간 전력 시스템의 성능 및 신뢰도 평가)

  • Min, Byeong-Jo;Lee, Seok-Ju;Kim, Hak-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.363-369
    • /
    • 2000
  • To flexibly evaluate performance and reliability of an electric power system in the aspect of the real-time system which is intrinsically characterized by stringent timing constraints fails catastrophically if its control input is not updated by its digital controller computer within a certain time limit called the hard deadline, we propose fuzzy-random variables and build a discrete event model embedded with fuzzy-random variables. Also, we adapt fuzzy-variables to a path-space approach, which derives the upper and lower bounds of reliability by using a semi-Markov model that explicitly contains the deadline information. Consequently, we propose certain formulas of state automata properly transformed by fuzzy-random variables, and present numerical examples applying the formulas as well.

  • PDF

Behavior of Regular Waves and Multi-Directional Random Waves Passing a Breakwater (방파제를 통과하는 규칙파와 다방향 불규칙파랑의 거동)

  • Park, Sang-Il;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-442
    • /
    • 2008
  • Diffraction of multi-directional random waves passing semi-infinite breakwater is investigated by using analytic solution derived by Penny and Prices(1952). An irregylarity of period and incident angle of waves and regular periods for regular waves are considered in addition by expanding from the past study which used only monochromatic wave in general. The Bretschneider-Mitsuyasu frequency spectrum and Mitsuyasu directional spectrum are used for incident waves. And diffraction of multi-directional random waves is reappeared by decomposing numerical results of several monochromatic waves which have variable period and incident angle. Analytic solution on the diffraction of regular waves and multi-directional random waves calculated in this study.

  • PDF