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Efficient Prediction in the Semi-parametric
Non-linear Mixed effect Model

Beong-Soo Sol

ABSTRACT

We consider the following semi-parametric non-linear mixed effect regres-
sion model : y; = f(z;; B)tou(zi)+oe,i=1,--,n,y* = f(z;8) +ou(z)
where y' = (y1,--,¥n) I8 a vector of n observations, y* is an unobserved
new random variable of interest, f(z;J) represents fixed effect of known
functional form containing unknown parameter vector §' = (81,---,5p) ,
u(z) is a random function of mean zero and the known covariance function
7(--) , € = (e1,---,€n) is the set of uncorrelated measurement errors with
zero mean and unit variance and ¢ is an unknown dispersion (scale) param-
eter. On the basis of finite-sample, small-dispersion asymptotic framework,
we derive an absolute lower bound for the asymptotic mean squared errors
of prediction (AMSEP) of the regular-consistent non-linear predictors of the
new random variable of interest ¥* . Then we construct an optimal predictor
of y* which attains the lower bound irrespective of types of distributions of k
random effect u(-) and measurement errors ¢ .

Keywords: Small-dispersion asymptotics; Regular-consistency; Semi-parametric
non-linear mixed effect model.

1. INTRODUCTION

Let us consider the following semi-parametric non-linear mixed effect regres-

sion model ;

vi = [flzi;B)+oulzi)+oe, i=1,---,n

vt = f(z;B)+ ou(z) (1.1)
where ' = (y1,---,¥n) i a vector of n observations , y* is a new unobserved

random variable of interest , f(z; ) is the non-linear regression function defined
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on D which represents fixed effect and contains unknown parameter vector ' =
(Bry---108p) , u(z),z € D is an arbitrary random function defined on D with
zero mean and known covariance function r(-,-) representing random effect |,
¢ = (e1, -+, €n) is a vector of uncorrelated measurement errors with zero mean
and unit variance which is assumed to be uncorrelated with the random effect
u(z) , z € D and o is an unknown dispersion (scale) parameter.

Above model (1.1) , which incorporates both fixed effect f(z, ) and random
effect u(z) and is called the mixed effect model in the literature, has many appli-
cations in such diverse fields as econometrics , mining , geology, animal breeding ,
meteorology , image restoration , agriculture , forestry , ecology and remote sens-
ing. See Robinson (1991) for a general review of various applications of linear
mixed effect model.

One of the most important problems in this model is to find the method
of efficiently predicting a new unobserved random variable of interest y* on the
basis of past available data (y;,z;),t = 1,---,n. For the important special
case of linear mixed effect model, this problem has been settled satisfactorily by
the classical theory of the best linear unbiased predictor (BLUP). See Robinson
(1991) for the history and alternative derivations of BLUP as an optimal linear
predictor. In the non-linear mixed effect model, the problem of efficient prediction
has received relatively little attention in the literature. As a recent work in this
direction , we can mention Gu (1990) who considered the problem of spline-
smoothing in the non-Gaussian regression model as a natural extension of the
semiparametric estimation method in the so-called partial-spline model of Engle
at al. (1986) and Wahba (1984). We can also mention the works of Wedderburn
(1974) and McCullagh (1983) on the robustness and the large-sample efficiency
of the Quasi-Likelihood estimator in the generalized linear model (GLM) which
depend only on the second-order structure and are independent of the types of
distributions of observations.

On the other band , in the small-sample non-linear problem , we can not
resort to the usual large sample theory such as asymptotic normality in compar-
ing performances of different prediction methods and should make a completely
different approach to the asymptotics . In a pioneering work in this direction Vil-
legas (1969) considered the problem of efficient estimation in the non-linear func-
tional relation model with replicated observations for fixed n. Recently Jorgensen
(1987) also investigated the possibility of small-sample low-noise asymptotics in
the so-called exponential dispersion model.

In this paper we will focus on the problem of finding efficient predictor of the
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new random variable of interest y* in the general non-linear mixed effect model
(1.1) for a finite fixed sample size n and will develop new optimality theory from
the perspective of small-dispersion asymptotics.

Motivated by the works of Villegas (1969) and Jorgensen (1987) on the small-
dispersion asymptotics for finite n , we will apply the method of small-dispersion
asymptotics to the prediction problem . This will provide us with the useful first-
order approximations of various performance measures of competing predictors
as dispersion parameter ¢ gets small. Specifically , after introducing relevant
concept of consistency of the non-linear predictor , we will establish an absolute
lower bound for the asymptotic mean squared errors of prediction (AMSEP) of
the regular consistent predictors. Then we construct an optimal predictor which
is based on the general non-linear least square (GNLS) estimator of the fixed
effect f(z;0) and the BLUP of its residuals and show that its AMSEP attains
the lower bound irrespective of the type of the distributions of random effect u(z)
and the measurement errors ¢; .

This paper is organized as follows . In section 2 we introduce basic concept of
regular consistent predictor as a natural extension of the linear unbiased predictor
to our non-linear framework. Then we derive a fundamental semiparametric lower
bound for the AMSEP of the regular consistent predictors which depends only on
the second-order moments of the random effects and measurement errors. Next
in section 3 , we construct an optimal predictor which is based on the non-linear
least squares estimator of the fixed effect and the BLUP of its residuals and
prove asymptotic optimality of the predictor . Finally in section 4 we discuss
several possible extensions of the main optimality result to other interesting class
of problems.

2. LOWER BOUND

First we introduce the basic concept of regular consistent predictor as a natu-
ral extension of the concept of linear-unbiased predictor of the linear mixed effect
model.

Definition 2.1. A predictor h(y) of the new random variable y* is called regular-
consistent if h(-) is continuously differentiable and satisfies the following consis-
tency condition :

hlf(B)] = f(z;8) for all €O (2.1)
where y' = (y1,*++,yn), F(B) = (f(z1;6),---,f(za;B8)) and © is an open set
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in RP.

Remark 2.1. We note that for the linear predictor , regular consistency reduces
to the familiar unbiasedness of the predictor in the mixed effect linear model.

Remark 2.2. We note that the consistency condition (2.1) is equivalent to the
following asymptotic unbiasedness condition :

Eh(y) —y*]=0(1) as o0, for any B € 6.

Remark 2.3. Another equivalent definition of the consistency (2.1) is the fol-
lowing condition :

lim A(y) = f(x;8) for any BcO.

oc—0

Remark 2.4. Our model (1.1) may be considered as a semiparametric regres-
sion model because it incorporates both parametric component f(z;3) which
typically represents large-scale global variation of the unknown regression surface
m(z) = E[Y|z], ¢ € D and the non-parametric component {u(z) , z € D} which
describes residual small-scale local variation of the regression function m(z) and
is formally modeled by the stochastic process of known covariance function r(, )
. In this partially-parametric framework , the problem of finding efficient pre-
dictor h(y) of the new random variable y* = f(z;8) + ou(x) at an arbitrary
fixed x € D reduces to the problem of finding efficient non-parametric function
estimator 1(z) of the unknown regression function m(z).

We also introduce the following definition of the AMSEP of the regular con-
sistent predictor as a natural performance measure .

Definition 2.2, AMSEP of the reqular consistent predictor h(y) of the new ran-
dom variable y* is formally defined as follows : If we have

oy -y ]S Zas o0,

then
AMSEP[h(y)] = 0*E[Z?]

d . . ;
where = means convergence in distribution.
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We also make the following regularity condition for the model .

A1 : The mapping f(8) = (f(z1;8), -, f(zn; B) from © C RP to R" is
homeomorphic ( one-to-one and bicontinuous ) and continuously differentiable.

Now we establish the fundamental lower bound for the AMSEP of the regular
consistent predictors of the new random variable y* .

Theorem 2.1. ( Lower Bound for AMSEP ) Let the condition A; be satisfied
and let F(B) = Df(B) = [0f (zi; 8)/0p;] be a n x p Jacobian matriz of f(B) with
a full rank p < n. Let h(-) be a regular consistent predictor of y* with 1 x n
gradient vector Vh(y) = [0h/8y;]. Then we have :

AMSEP[h(-)] = (r(z, z) + wQ ') + [VA(£(8)) — w]Q L VA(f(B)) — w2~
(2.2)
and

AMSEPR] > (r(z,2) + wQ™ W) + [V — FIQIF[FQIF VS — F'Q L F]

(2.3)
where Vf = [0f(z; 5)/08;] is the 1 x p gradient vector of f(z;8) with respect
to B, w is the 1 x n vector of covariances {cov(u(z), u(z;))] = [r(z, ;)] and Q
is a positive definite covariance matriz Cov(u + €) of the n X 1 random vector
u+e= (u(z;) +€).

Proof: First we note that regular consistency of h(y) as a predictor of y* implies
that ;

hy) — v* = hy) - h(F(B)) — ou(z)
= VA([fB)ly - f(O)] —oulz) +o(0) aso— 0. (24

Multiplying both sides of (2.4) by o~1, we have :
o~ h(y) —y*1 = VA(F(B))e 'y — F(8)] — u(z) +0(1) as o —0
This completes the proof of (2.2) because

AMSEPK(-)] = E[(VR(F(B))(u + €) — u(z))Y]
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which is the same as the expression in (2.2) . As for the proof of the lower bound
of (2.3), we begin with the identity (2.1) :

hf(B)) = f(z;B) forall B € ©.
Differentiating above identity with respect to 3, we have the identity :

Vh(f(B)Df(B) = Vi(z;B)- (2.5)

Subtracting wQ1F from (2.5) and postmultiplying it by a p x 1 vector a , we
have ;
(Vh—wQ Fa = (Vf - wQ ' F)a.

Then by the Cauchy-Schwartz inequality , we get the inequality ;

(Vh — wQ HQVRE - wQ) > [(VF —wQ  F)al? /(' F'Q  Fa) (2.6)
Now taking supremum of the lower bound of (2.6) with respect to a € RP and
noting the fact that sup,cge(a'b)?/(a’Aa) = b’ A~1b, we obtain the required in-
equality (2.3) immediately ;
AMSEP[h(y)] > (r(z, 2) +wQ )+ [V —wQ L FY(FQ I F) TV -wQ™ ).

O

Remark 2.5. If welet b* = wQ™ 1+ (Vf - FQ W) (F'Q1F)7F'Q 1, then
we have the identity :

[Vh - wQ YQ[VE - wQ™Y] = R*QRY + (VA-R)Q(VA—RY)  (2.7)

which follows immediately from (2.5) . Above identity provides us with not
only alternative proof of the lower bound (2.3) but also important necessary and
sufficient condition for the attainability of the lower bound :

Vh(f(B)) = R". (2.8)

Now we introduce the definition of the efficiency of the regular consistent
predictor as follows ;

Definition 2.3. A regular consistent predictor h(y) of y* is said to be efficient
if its AMSEP attains the lower bound (2.3) for all B € ©.

In the next section we will construct an efficient regular consistent predictor
h(y) of y* .
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3. EFFICIENT PREDICTOR

In order to construct an efficient regular consistent predictor of y* = f(z;8)+
ou(z) we have to find not only the efficient estimator of the fixed component
f(z; 8) but also some efficient predictor of the random component u(z) . As a
first step we introduce the general non-linear least squares (GNLS) estimator of

8.

Definition 3.1. GNLS estimator 8 of  is defined formally as the unique solu-
tion of the following system of normal equations :

F(y,6) = Df(BYQ 'y - f(B)] =0 (3.1)

if there exists an unique solution and is defined arbitrarily otherwise.

We also assume the following regularity condition :
A, : F(B) = Df(B) is a continuously differentiable function of g in ©.

Motivated by the theory of BLUP in the linear mixed effect model , we now
introduce the following predictor h(y) of y* which is based on the GNLS estimator
B of B and its residuals :

h'(y) = flz;B) + i(z) (3.2)

where 4(z) = w(z)Q 1y — f(B)] and w(z) = (r(z,71), -, 7(z,zn)). Now we
claim that the predictor h*(y) is an efficient regular consistent predictor of y*.

Theorem 3.1. Let the conditions A1 and Ag be satisfied. Then the predictor
h*(y) is an efficient regular consistent predictor of y* .

Proof: First by the same argument as in theorem 2.1 of Ferguson (1958), we can
establish the existence and uniqueness of the GNLS estimator E(y) of § which
is defined on some neighborhood N of the set § = {f(8) € R™";5 € ©} and is
continuously differentiable such that

B(f(B) =P forall B ®©
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and
F(y,B) =Df' (B (y— f(B)) =0. (3.3)

This establishes both regularity and consistency of the predictor A*(y) immedi-
ately. Now expanding F(y, §) in (3.3) around /3 and rearranging terms, we have
the result

-8 = (FQ'F)T'FQ  (y - f(B)) + olo) aso—0.  (34)
On the other hand , we note that
K@) -y = f(@B)+w@9 (y— f(B) - f(z,8) - oul() (3.5)
= Vi(z,B)B-B) +w (v~ f(B) — Df(B—B)) — ou(z) + o(0).
Substituting (3.4) in (3.5) , we obtain immediately

B*(y) — y* =[wQ 7+ (VF ~ wQIF)(F'QF)IF'Q~ Yy — £(B))—ou(z)+0(0).
(3.6)
Multiplying (3.6) by 0! we have
o R (y) — y*1 = VR* (£ (B8))(u + €) — u(z) + o(1).

Since we have VA*(f(8)) = h* , we conclude the efficiency of the predictor A*(y)
directly from the sufficient condition (2.8) of Remark 2.5. O

Remark 3.1. As is noted in Remark 2.4 , the optimal predictor

K (z;y) = f(z;8) +w(@)Q y - f(B)) , z €D

, when written as an explicit function of z € D and the data y = (y1,*+,¥n)’
, can be considered as a kind of non-linear smoother my,(z) of the unknown
regression function m(z) = f(z; ) + ou(z) with a nice reproducing property of
recovering original function m(z) exactly for any finite n whenever there is no
model error u(z) and no measurement errors € .

4. DISCUSSIONS

In this section we discuss several possible extensions of the finite-sample small-
dispersion optimality results of previous sections to other class of interesting
mixed non-linear models.
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Remark 4.1. When we have correlated measurement errors ¢ = (€1, --,€p)
with known covariance matrix ¥ = [o;], we can easily obtain optimal predictor
of the new random variable y* if we let @ = Cov(u+¢€) = R+ X, R = [r(z;, z;)] -

Remark 4.2, Furthermore if Cov(e) =X (3) and the covariance function r(:,;; 8)
of the random effect u(z) depend explicitly on /3 as is the case in GLM , we can
also construct an optimal regular consistent predictor h*(y) of the new random
variable y* which is based on the quasi-likelihood estimator (QLE) B of § given
by the solution of the normal equation ;

D' (BB - f(8) = 0.

If there exists a consistent estimator Q of 2 ,we can also construct an alternative
optimal regular consistent predictor h**(y) which is based on the modified GNLS
estimator 5 of 8 defined by ;

Df'(B)Hy - £(B)) = 0.

Remark 4.3. Finally let us consider the following type of very general mixed
effect model which include our model (1.1) as special case ;

Yi = f($2718)u(z1,))+61 i:l,---,n
y« = f(z;0,u(z))

where f(z; 8,u(z)) is a smooth function of (3, u) for each z € D . Under suitable
finite-sample small-dispersion asymptotic framework , we can expect to find an
optimal non-linear predictor A*(y) of y* . Optimality theory for this important
class of problems will be pursued in a subsequent paper in detail.
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