• Title/Summary/Keyword: scientific inquiry

Search Result 624, Processing Time 0.024 seconds

Elementary School Teachers' Conception of the Learning Content of Elementary Science Education Subject Required in the 4th Industrial Revolution Era (4차 산업혁명 시대에 필요한 초등 과학교육학 과목의 학습 내용에 대한 초등 교사의 인식)

  • Na, Jiyeon
    • Journal of Science Education
    • /
    • v.45 no.1
    • /
    • pp.90-104
    • /
    • 2021
  • This study conducted an online survey to understand what elementary school teachers think about the learning contents of elementary science education subjects needed to train elementary science teachers suitable for the era of the 4th Industrial Revolution. The results are as follows: First, there were many elementary school teachers who thought that the current learning content of elementary science education was not suitable for the era of the 4th Industrial Revolution and that it needed to modify the learning content. Many of the teachers said that the learning content of the subject did not include the characteristics of the 4th Industrial Revolution, but also did not reflect the changes of the times and remained in the past. Second, the content that elementary school teachers thought was important in training elementary school teachers suitable for the era of the 4th Industrial Revolution was mainly related to the interests and curiosity of students, and scientific experiments or inquiry. On the contrary, the items that they thought should be deleted or reduced included science learning theory, science teaching/learning model, nature of science, and guidance for gifted children. Third, the contents that elementary school teachers thought needed to be added as learning content of elementary science education subjects were SSI education, science education-related social change and future prediction, advanced science technology, STEAM guidance, and integrated education within the science field. Fourth, in order to train elementary school teachers suitable for the era of the 4th Industrial Revolution, the contents that they thought should be introduced first as learning content of elementary science education subjects were SSI education, integrated education within the science field, STEAM guidance, and core competencies. Other contents that need to be introduced were software education, safety education, and project learning methods.

An Analysis Reflecting on the Science core Competency of Certification Textbooks in Elementary School and Teachers' and Students' Perceptions (초등학교 3~4학년군 과학 검정 교과서의 과학핵심역량(ScC) 반영 실태 및 교사와 학생의 인식)

  • Chae, Heein;Noh, Sukgoo
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.325-337
    • /
    • 2022
  • This study aims to determine the implications of the efficient and effective implementation of science core competency (ScC) education by examining the state of science core competencies derived from the 2015 revised elementary school science curriculum and analyzing teachers' and students' perceptions. To this end, this paper investigated the reality of reflecting the science core competencies of science textbooks in a group of third and fourth graders from seven elementary schools who passed the test. In addition, in-depth interviews were conducted with four elementary school teachers who participated in qualification textbook selection, and 156 elementary school students were surveyed to determine their perceptions of science core competencies. Findings showed that, first, 1,586 science core competencies were reflected throughout the textbooks, with an average of 227 per textbook and biology being the most salient area. Second, teachers did not understand the difference between previous inquiry activities in textbooks and ScC education. Third, no statistically significant differences were observed in the perceptions of male and female students on science core competencies, the highest average of perceptions being those of scientific thinking ability. From these results, this study concluded that for ScC education to be realized as a curriculum, textbooks must be organized according to the purpose of core competency education, implementing practical changes, and efforts must be directed toward changing the perceptions of individuals who deliver education.

Instructional Effects of Elementary Science Classes Using Metaverse and Perceptions of Students: 'Structure and Function of Plants' Unit in Sixth Grade (메타버스를 활용한 초등 과학 수업의 효과 및 학생들의 인식 - 6학년 '식물의 구조와 기능' 단원을 중심으로 -)

  • Wang, Taejoe;Lim, Heejun
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.591-604
    • /
    • 2023
  • This study investigated the impact of elementary science classes using metaverse on the academic achievement, positive experience in science, and digital literacy of elementary school students. In addition, we examined their perceptions. The respondents were derived from two classes in the sixth grade at an elementary school in Gyeonggi-do, who were selected designated as the experimental (n=29 students) and comparative (n=29) groups, respectively. Across five lessons under the "Plant Structure and Function" unit, the experimental group conducted science classes using the metaverse, whereas the comparative group conducted general textbook-based classes. To investigate instructional effects, the study performed ANCOVA using the pre-test score as a covariate, a survey on the perception of students about science classes using metaverse, and conducted interviews with a number of subjects. The result demonstrated that science classes using metaverse exerted no significant effect on scientific academic achievement and digital literacy. However, the study observed a statistically significant effect on science learning emotion which is a sub-element of positive experiences in science. The students were positively aware of science classes using metaverse in terms of interesting and diverse activities, and free expression of inquiry results and perceived the instability of smart devices and network connections as regrettable. Finally, the study posed the implications of the use of metaverse in science classes.

Narratives of Science Educators Concerning the Relationship between Theoretical Concepts and Modeling: Focus Group Discussions (과학적 이론과 모델의 관계에 대한 과학교육 연구자들의 이야기 - 포커스 그룹 토의 -)

  • Choi, Jinhyeon;Lee, Jong-Hyeok;Lee, Hyekeoung;Ryu, Kumbok;Kim, Kwan-Young;Jeon, Sang-Hak;Lee, Sun-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.538-559
    • /
    • 2023
  • In this study, the interplay between models and theories was explored through a series of focus group discussions (FGDs) involving five experts in science education. The FGDs were held seven times, beginning with the question of what is modeling in relation to models, which is a current area of research in science education. Throughout the discussion, several key issues regarding models and modeling were addressed, with a particular emphasis on their relationship to theory. A notable finding from this study is that the participants' discussions did not converge into a single viewpoint regarding the relationship between theory and models; instead, multiple related issues emerged, leading to attempts to reframe existing concepts and seek new understanding. The study findings relate to three main areas of inquiry: What is the meaning of models or modeling? What is the nature of the relationship between models and theories?, and Is modeling possible without a foundation in theory? Particularly, the relationship between models and theories was discussed in reference to the following points: 1) Is a model to be understood as derived from theory, and is modeling the application of theory to phenomena? 2) Can a model be inferred from theory? 3) Does modeling originate from a specific, structured foundational theory (a framework of empirical knowledge), or is it to be understood through the integration of various resources without explicit reference to a foundational theory? Based on the study outcomes, implications are presented for philosophy of science and for researchers and educators working in the realm of science education.

Comparison of Hypotheses-Formation Processes between an Earth Scientist and Undergraduate Students: A Case Study about a Typhoon's Anomalous Path (지구과학자와 대학생들의 가설 형성 과정 비교: 태풍의 이상 경로에 대한 사례를 중심으로)

  • Oh, Phil-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.649-663
    • /
    • 2008
  • The purpose of this study was to compare the processes of making hypotheses concerning the anomalous path of Wukong, a typhoon that came close to Korea recently, between an earth scientist and undergraduate students. Data were obtained through interviews with a practicing earth scientist as well as five undergraduate students. Inquiry reports of the students were also analysed. The result showed that while the earth scientist conducted a case study with already-established models of typhoon, the students were enabled to work on the specific case of Wukong only after they learned general theories on typhoons. Background knowledge played an important role for the scientist and students to formulate scientific hypotheses. Both the earth scientist and undergraduate students generate multiple working hypotheses, and they considered a couple of conditions to select more plausible hypotheses, including theoretical coherence, causative processes, and consistency with empirical data. Despite these similarities, there were differences in the scope and depth of background knowledge between the scientist and students. In addition, it was not likely that the undergraduate students possessed explicit perceptions of the conditions which could make a hypothesis more probable, except for the empirical consistency. Implications for science education and relevant research were discussed.

A Meta-Analysis on the Effects of Integrated Education Research (통합교육의 효과에 대한 메타분석)

  • Kim, Jiyoung;Park, Eunmi;Park, Jieun;Bang, Dami;Lee, Yoonha;Yoon, Heojoeng
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.403-417
    • /
    • 2015
  • The purpose of this study was to investigate the effectiveness of integrated education research conducted in Korea and to propose a meaningful discussion for further research. Among the studies conducted for last three years, the relevant 161 research articles were selected, and 236 effect sizes were calculated. Effect sizes were analyzed with different dependant variables including creativity, problem solving ability, academic achievement, inquiry skills, creative personality, scientific attitude, and interests. In addition, effect sizes with different moderating variables, such as characteristics of subjects, sample sizes, class types, core disciplines and publication types, were compared. The results are as follows: The overall effect size of integrated education program produced a huge effect (effect size=0.88, U3=81.06%). Integrated education program showed the highest effect size on scientific attitude among other dependant variables. However, all of the other dependant variables represented more than medium size effect size. Integrated program proved to be more effective on kindergarten pupils and gifted students compared to other school levels and regular students. The effect size for group of less then thirty students were larger than other groups. Programs implemented in after school hours were more effective than in regular school hours. Considering the core subject of program, arts-centered integrated programs showed the largest effect size, while all the others showed above medium effect sizes. Finally, doctoral dissertation showed the highest effect size compared to master's thesis and academic journal articles. Conclusions and recommendations for further research were provided.

Impacts of Collaborative Problem Solving for Character Competency (CoProC) Strategy on the Practical Character Competency and Collaborative Problem Solving Competency in Middle School Science (협력적 문제해결(CoProC) 전략을 통한 중학생의 실천적 인성 역량 및 협력적 문제해결력의 함양)

  • Cho, Hye Sook;Kwon, Dong Uk;Kang, Eugene;Park, Jongseok;Son, Jeongwoo;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.5
    • /
    • pp.681-691
    • /
    • 2018
  • The purpose of this study is to investigate the impacts of Collaborative Problem solving for Character competency (CoProC) strategy on the practical character competency and collaborative problem solving competency in middle school. For this study, 49 seventh grade students (two classes) were selected for use applying the CoProC strategy (CoProC group) while 46 students (two classes) were used for traditional lecture and experimental class (comparative group). In the result, CoProC group showed a statistically significant result in practical character competency than the comparative group. In the sub items of the competency, the CoProC group showed result statistically significant in cooperation, communication, responsibility, and positive self-understanding than the comparative group. Analysis of the effect size of students' practical character competency showed that the CoProC group results showed more effective than the comparative group in terms of care, cooperation, communication, honesty, responsibility, positive self-understanding, and self-regulation. In addition, we investigated the effect of the CoProC strategy on collaborative problem solving competency. As a result, it showed a large effect in the total score of collaborative problem solving competency. Among the sub items of the competency, 'exploration and understanding of members' showed a small size of effect and 'Establishing and maintaining team organization' showed a medium size of effect. 'Communication' and 'self-reflection' showed a large effect. CoProC strategy embedded in Science subject could improve students' collaborative problem solving competency through the process of scientific communication in the scientific inquiry process.

A Qualitative Study on the Cause of Low Science Affective Achievement of Elementary, Middle, and High School Students in Korea (초·중·고등학생들의 과학 정의적 성취가 낮은 원인에 대한 질적 연구)

  • Jeong, Eunyoung;Park, Jisun;Lee, Sunghee;Yoon, Hye-Gyoung;Kim, Hyunjung;Kang, Hunsik;Lee, Jaewon;Kim, Yool;Jeong, Jihyeon
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.3
    • /
    • pp.325-340
    • /
    • 2022
  • This study attempts to analyze the causes of low affective achievement of elementary, middle, and high school students in Korea in science. To this end, a total of 27 students, three to four students per grade, were interviewed by grade from the fourth grade of elementary school to the first grade of high school, and a total of nine teachers were interviewed by school level. In the interview, related questions were asked in five sub-areas of the 'Indicators of Positive Experiences about Science': 'Science Academic Emotion', 'Science-Related Self-Concept', 'Science Learning Motivation', 'Science-Related Career Aspiration', and 'Science-Related Attitude'. Interview contents were recorded, transcribed, and categorized. As a result of examining the causes of low science academic emotion, it was found that students experienced negative emotions when experiments are not carried out properly, scientific theories and terms are difficult, and recording the inquiry results is burdensome. In addition, students responded that science-related self-concept changed negatively due to poor science grades, difficult scientific terms, and a large amount of learning. The reasons for the decline in science learning motivation were the lack of awareness of relationship between science class content and daily life, difficulty in science class content, poor science grades, and lack of relevance to one's interest or career path. The main reason for the decline in science-related career aspirations was that they feel their career path was not related to science, and due to poor science performance. Science-related attitudes changed negatively due to difficulties in science classes or negative feelings about science classes, and high school students recognized the ambivalence of science on society. Based on the results of the interview, support for experiments and basic science education, improvement of elementary school supplementary textbook 'experiment & observation', development of teaching and learning materials, and provision of science-related career information were proposed.

Watt, Who is he? (와트, 그는 누구인가?)

  • Choi, Jun-Seop;Yu, Jae-Young;Im, Mee-Ga
    • 대한공업교육학회지
    • /
    • v.42 no.2
    • /
    • pp.108-122
    • /
    • 2017
  • This research paper is to examine James Watt who led the 1st industrial revolution successfully. His great work was called monumental achievement in the human history of civilization. Here, we looked over the Watts' educational environment during his infant, juvenile, and adolescence period and also, his learning attitude about his own field through literature review. The basic infra of soft and hard wares for the industrial revolution through the process of R & D on new developing steam engine resulted from the very industrial revolution and its R & D environment were to be investigated. The useful information and knowledge from this process of the research are able to give an appropriate educational guidance to bring up the development of creativity in schooling systems. And also a lesson from the past could be used to provide the desirable direction for the 4th industrial revolution which is just begun to start now. The main results from this study are as follows; First, Watts' parents positively guided him onto the technology of manual field because they recognized their son was interested in technology field. The parents' attitude stimulated and guided his sons' self-development, had been equal to the aims of education. Second, Watt made a chance of making friendships with professors of Glasgow University. He spontaneously had done self-directed learning for getting knowledge and technology, and thus he became an expert of practical engineer and theorist. Third, the Lunar society, which was jumping over one's social position in their society of the 18th century through new thinking way, leading new ages had been very good R & D social infra for Watt to open and connect new advanced level of science and technology in his age. This society provided a study environment fields for their members to exchange their ideas of scientific curiosity and freely inquiry, technology informations. They had discussed and understood the issues to be occurred in their own fields and accumulated necessary knowledge for problem-solving, respectively. Such as this R & D system environment will be also considered in the modern research group. Fourth, the entrepreneur such as Boulton, who understand technology and grasp its value in future, is needed. The system of 'grue of management' will support the researcher with financial support, which is necessary in R & D. And the researcher like Watt who takes pleasure in technology itself and study eagerly in his field without financial problems, that is, 'grue of technical expert' is essential when leading to success in the industrial revolution.

A Case Study for Developing 'Personal Practical Knowledge(PPK)' of Pre-service Chemistry Teachers: Based on the Reflective Discussion of Community of Practice(CoP) Activity (예비 화학교사들의 실천적 지식(PPK) 함양을 위한 사례연구 -실행공동체(CoP) 활동의 반성적 논의를 중심으로-)

  • Kim, Yu-Jung;Hong, Hun-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.347-358
    • /
    • 2017
  • The purpose of this study is to research on the professional development of pre-service chemistry teachers in terms of personal practical knowledge(PPK), and draw a discussion for pre-chemistry teacher education. A reflective discussion through a Community of Practice(CoP) activity has been conducted with 5 pre-service chemistry teachers studying in a college of education located in Seoul. The analysis of the results reveals that 'Subject-matter knowledge' is leaning toward massive chemical contents, 'Curriculum knowledge' is below the level of selecting, analyzing, and applying curriculum materials. 'Instruction knowledge', especially the knowledge of chemistry experiment and research, is not enough to lead secondary students' scientific experiment. 'Milieu of school knowledge' is stunted in growth for the reason of communication-deficiency between a college of education and a community, and among education- related groups. 'Self-knowledge' has been diminished not only because there is a bad influence from college classmates not wanting to be a teacher, but also a lack of communication in the chemistry-education department which can make pre-teachers' belief strong. In conclusion, it is especially needed for the chemistry-education department to strengthen pre-teachers' 'Self-knowledge' in order to develop PPK. This study suggests operating 'a professional community' that has a periodic meeting with pre-service teachers, teachers, professors, community people, education practitioners, and researchers. In addition, it would be effective for increasing pre-teachers' PPK to reconsider depth and direction of 'Subject-matter knowledge', to give an opportunity to examine curriculum materials critically and reorganize them, to improve the course of chemistry experimental subject to the way of improving pre-teachers' leadership in chemistry inquiry experiment, and to raise the quality of educational service activities.