• Title/Summary/Keyword: scalar unit

Search Result 39, Processing Time 0.02 seconds

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE

  • Kim, Jongsu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1087-1098
    • /
    • 2013
  • We find a $C^{\infty}$-continuous path of Riemannian metrics $g_t$ on $\mathbb{R}^k$, $k{\geq}3$, for $0{\leq}t{\leq}{\varepsilon}$ for some number ${\varepsilon}$ > 0 with the following property: $g_0$ is the Euclidean metric on $\mathbb{R}^k$, the scalar curvatures of $g_t$ are strictly decreasing in $t$ in the open unit ball and $g_t$ is isometric to the Euclidean metric in the complement of the ball. Furthermore we extend the discussion to the Fubini-Study metric in a similar way.

MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE IN 3 DIMENSION

  • Kang, Yu-Tae;Kim, Jong-Su;Kwak, Se-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.581-588
    • /
    • 2012
  • We find a $C^{\infty}$ one-parameter family of Riemannian metrics $g_t$ on $\mathbb{R}^3$ for $0{\leq}t{\leq}{\varepsilon}$ for some number ${\varepsilon}$ with the following property: $g_0$ is the Euclidean metric on $\mathbb{R}^3$, the scalar curvatures of $g_t$ are strictly decreasing in t in the open unit ball and $g_t$ is isometric to the Euclidean metric in the complement of the ball.

SOME REMARKS ON H𝑣-GROUPS

  • Lee, Dong-Soo;Chung, Sang-Cho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.9-17
    • /
    • 2001
  • Vogiouklis introduced $H_v$-hyperstructures and gave the "open problem: for $H_v$-groups, we have ${\beta}^*={\beta}^{\prime\prime}$. We have an affirmative result about this open problem for some special cases. We study ${\beta}$ relations on $H_v$-quasigroups. When a set H has at least three elements and (H, ${\cdot}$) is an $H_v$-quasigroup with a weak scalar e, if there are elements $x,y{\in}H$ such that xy = H \ {e}, then we have (xy)(xy) = H.

  • PDF

On Design for Elimination of the Merging Delay Time in the Multiple Vector Reduction (Inner Product) (다중벡터감출처리(내적처리)에서 합병지연시간의 제거를 위한 설계)

  • Cho, Young-Il;Kweon, Kyeok-Ryool
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3986-3994
    • /
    • 2000
  • A multiple vector reductive processing occurs during the vector inner product operation ([C] = [A] $\bigodot$,$\square$ [B]) and proceeds at the hardware dyadic pipeline unit. Every scalar result has to be generated with the component merging delay time in the multiple vector reduction($\bigodot$). In this paper we propose a new design method by which the component merging time could be eliminated from the multiple reduction and the scalar results from the reduction($\bigodot$) could be generated nearly in the almost same condensed time as the input components are fel>ded in the dyadic pipeline unitlo) or the output components are drained out of the dyadic pipeline unit($\square$), so called a dedicated chained pipeline unit for only a inner product operation.

  • PDF

REDUCING SUBSPACES OF WEIGHTED SHIFTS WITH OPERATOR WEIGHTS

  • Gu, Caixing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1471-1481
    • /
    • 2016
  • We characterize reducing subspaces of weighted shifts with operator weights as wandering invariant subspaces of the shifts with additional structures. We show how some earlier results on reducing subspaces of powers of weighted shifts with scalar weights on the unit disk and the polydisk can be fitted into our general framework.

Elliptic Curve Cryptography Coprocessors Using Variable Length Finite Field Arithmetic Unit (크기 가변 유한체 연산기를 이용한 타원곡선 암호 프로세서)

  • Lee Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.57-67
    • /
    • 2005
  • Fast scalar multiplication of points on elliptic curve is important for elliptic curve cryptography applications. In order to vary field sizes depending on security situations, the cryptography coprocessors should support variable length finite field arithmetic units. To determine the effective variable length finite field arithmetic architecture, two well-known curve scalar multiplication algorithms were implemented on FPGA. The affine coordinates algorithm must use a hardware division unit, but the projective coordinates algorithm only uses a fast multiplication unit. The former algorithm needs the division hardware. The latter only requires a multiplication hardware, but it need more space to store intermediate results. To make the division unit versatile, we need to add a feedback signal line at every bit position. We proposed a method to mitigate this problem. For multiplication in projective coordinates implementation, we use a widely used digit serial multiplication hardware, which is simpler to be made versatile. We experimented with our implemented ECC coprocessors using variable length finite field arithmetic unit which has the maximum field size 256. On the clock speed 40 MHz, the scalar multiplication time is 6.0 msec for affine implementation while it is 1.15 msec for projective implementation. As a result of the study, we found that the projective coordinates algorithm which does not use the division hardware was faster than the affine coordinate algorithm. In addition, the memory implementation effectiveness relative to logic implementation will have a large influence on the implementation space requirements of the two algorithms.

An Architecture of Vector Processor Concept using Dimensional Counting Mechanism of Structured Data (구조성 데이터의 입체식 계수기법에 의한 벡터 처리개념의 설계)

  • Jo, Yeong-Il;Park, Jang-Chun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.167-180
    • /
    • 1996
  • In the scalar processing oriented machine scalar operations must be performed for the vector processing as many as the number of vector components. So called a vector processing mechanism by the von Neumann operational principle. Accessing vector data hasto beperformed by theevery pointing ofthe instruction or by the address calculation of the ALU, because there is only a program counter(PC) for the sequential counting of the instructions as a memory accessing device. It should be here proposed that an access unit dimensionally to address components has to be designed for the compensation of the organizational hardware defect of the conventional concept. The necessity for the vector structuring has to be implemented in the instruction set and be performed in the mid of the accessing data memory overlapped externally to the data processing unit at the same time.

  • PDF

On the Support of Minimum Mean-Square Error Scalar Quantizers for a Laplacian Source (라플라스 신호원에 대한 최소평균제곱오차 홑 양자기의 지지역에 관하여)

  • Kim, Seong-Min;Na, Sang-Sin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.991-999
    • /
    • 2006
  • This paper shows that the support growth of an optimum (minimum mean square-error) scalar quantizer for a Laplacian density is logarithmic with the number of quantization points. Specifically, it is shown that, for a unit-variance Laplacian density, the ratio of the support-determining threshold of an optimum quantizer to $\frac 3{\sqrt{2}}1n\frac N 2$ converges to 1, as the number of quantization points grows. Also derived is a limiting upper bound that says that the optimum support cannot exceed the logarithmic growth by more than a constant. These results confirm the logarithmic growth of the optimum support that has previously been derived heuristically.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM WITH 𝜉-PARALLEL STRUCTURE JACOBI OPERATOR

  • U-Hang KI;Hyunjung SONG
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c). We denote by A, K and L the second fundamental forms with respect to the unit normal vector C, D and E respectively, where C is the distinguished normal vector, and by R𝜉 = R(𝜉, ·)𝜉 the structure Jacobi operator. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y , and at the same time R𝜉K = KR𝜉 and ∇𝜙𝜉𝜉R𝜉 = 0. In this paper, we prove that if it satisfies ∇𝜉R𝜉 = 0 on M, then M is a real hypersurface of type (A) in Mn(c) provided that the scalar curvature $\bar{r}$ of M holds $\bar{r}-2(n-1)c{\leq}0$.