SOME REMARKS ON H_v -GROUPS

DONG-SOO LEE* AND SANG-CHO CHUNG**

ABSTRACT. Vogiouklis introduced H_v -hyperstructures and gave the "open problem: for H_v -groups, we have $\beta^* = \beta$ ". We have an affirmative result about this open problem for some special cases.

We study β relations on H_v -quasigroups. When a set H has at least three elements and (H, \cdot) is an H_v -quasigroup with a weak scalar e, if there are elements $x, y \in H$ such that $xy = H \setminus \{e\}$, then we have (xy)(xy) = H.

1. Introduction

In 1934 S. F. Marty[?] introduced a basic concept of hyperstructures and, in 1990 T. Vougioklis[?] introduced H_v -hyperstructures and studied about H_v -groups defined on the same set $H = \{e, a, b\}$.

Freni[?] proved that, if H is a hypergroup, then $\beta^* = \beta$. Vogiouklis[?, Thm.1.2.2.] proved that, when (H, \cdot) is an H_v -group, the fundamental relation β^* is the transitive closure of the relation β . And also he gave the following "open problem".

For H_v -groups, we have $\beta^* = \beta$.

We have an affirmative result about this open problem for some special cases.

We study β relations on H_v -quasigroups. When a set H has at least three elements and (H, \cdot) is an H_v -quasigroup with a weak scalar e, if there are elements $x, y \in H$ such that $xy = H \setminus \{e\}$, then we have

Received by the editors on December 3, 2001.

¹⁹⁹¹ Mathematics Subject Classifications: 20N99.

Key words and phrases: hyperoperation, H_v -quasigroup, H_v -group, weak scalar. scalar unit.

(xy)(xy) = H. Using this lemma, when $u_1 = H \setminus \{a\}$ and $u_2 = H \setminus K$ where $u_1, u_2 \in \mathcal{U}, a \in H \setminus \{e\}$, and $K \subset H \setminus \{e\}$, if $u_1 \cup u_2 = H$, then β is an equivalence relation and $H/\beta \cong \mathbb{Z}_1$.

In Theorem ??, let $u_1 = H \setminus H_1$ and $u_2 = H \setminus K$ where $u_1, u_2 \in \mathcal{U}, e \in u_1 \cap u_2$. If $u_1 \cup u_2 = H$, then also β is an equivalence relation and $H/\beta \cong \mathbb{Z}_1$.

2. Some results on H_v -groups

Let H be a nonempty set and $P^*(H)$ be the set of all nonempty subsets of H. We say that a function $\cdot : H \times H \longrightarrow P^*(H)$ is a hyperoperation on H. We assume that for subsets A, B of H

$$A \cdot B = \bigcup_{a \in A, \ b \in B} a \cdot b.$$

A hyperoperation \cdot on H is weak associative(WASS) if the sets $(x \cdot y) \cdot z$ and $x \cdot (y \cdot z)$ have nonempty intersection, i.e.

 $(x \cdot y) \cdot z \cap x \cdot (y \cdot z) \neq \emptyset$ for all x, y, z in H.

We say that a hyperoperation \cdot on H satisfies the *reproduction property* if

$$x \cdot H = H \cdot x = H$$
 for all x in H .

We call an ordered pair (H, \cdot) as a hyperstructure on H. A hyperstructure (H, \cdot) is called an H_v -semigroup if \cdot is WASS and an H_v -quasigroup if \cdot satisfies the reproduction property.

Recall that a hyperstructure (H, \cdot) is called an H_v -group if it is an H_v -quasigroup and an H_v -semigroup. Furthermore, an H_v -group (H, \cdot) is called a hypergroup if \cdot is associative.

From now on, we do not use the notation \cdot in the equation if it does not cause any confusion.

DEFINITION 2.1. Let (H, \cdot) be a hyperstructure.

An element $s \in H$ is called a *weak scalar* if sx and xs are singletons for all $x \in H$. Furthermore, if sx = xs, then s is called a *scalar*.

An element $u \in H$ is called a *unit* if $x \in ux \cap xu$ for all $x \in H$.

An element $e \in H$ is called a *scalar unit* if $ex = xe = \{x\}$ for all $x \in H$.

Note that if a hyperstructure (H, \cdot) has a scalar unit, then it is unique.

EXAMPLE 2.2. Let H be a set $\{e, a, b\}$. Then there is an H_v quasigroup with a weak scalar but not scalar e.

•	e	a	b
e	e	a	b
a	b	H	H
b	a	H	H

Let (H, \cdot) and (H', *) be two hyperstructures. A function f: $(H, \cdot) \rightarrow (H', *)$ is an *isomorphism* if $f(x \cdot y) = f(x) * f(y)$ for all $x, y \in H$ and it is a bijection. We say that H is *isomorphic* to H' if there is an isomorphism between (H, \cdot) and (H', *), and we denote it by $H \cong H'$.

Let H be a hyperstructure. Let us denote by \mathcal{U} the set of all finite products of elements of H and define the relation β in H as follows :

 $x\beta y$ iff $\{x, y\} \subset u$ for some $u \in \mathcal{U}$.

In general, β is not an equivalence relation. For example, let H be the set $\{e, a, b\}$ and consider following H_v -structure:

•	e	a	b
e	e	e	e^{-1}
a	e	$\{e, a\}$	e
b	e	e	$\{e, b\}$

Then the β relation on H satisfies the reflexive and symmetric laws but not the transitive law. For instance, we have $a\beta e$ and $e\beta b$ but not $a\beta b$.

Let (H, \cdot) be an H_v -group. We define the β^* relation as the smallest equivalence relation, one can say also congruence, such that the quotient H/β^* is a group. The β^* is called *fundamental equivalence relation*.

Freni[?] proved that, if H is a hypergroup, then $\beta^* = \beta$. Vougiouklis [?, Thm.1.2.2.] proved that, when (H, \cdot) is an H_v -group, the fundamental relation β^* is the transitive closure of the relation β . And also he mentioned the following "open problem".

For H_v -groups, we have $\beta^* = \beta$.

We study this open problem for some special cases.

From now on, a set H has at least three elements and (H, \cdot) is an H_v -quasigroup with a weak scalar e. We have some results for H_v quasigroup.

LEMMA 2.3. If there are elements $x, y \in H$ such that $xy = H \setminus \{e\}$, then (xy)(xy) = H.

In particular, if there is a finite product u of elements of H containing $H \setminus \{e\}$, then we have $u^2 = H$.

Proof. Assume that $xy = H \setminus \{e\}$ for some $x, y \in H$. Since H is an H_v -quasigroup and e is a weak scalar, there are $a, b \in H \setminus \{e\}$ such

that $ae \cap be = \emptyset$. Then we have

$$(xy)(xy) = (H \setminus \{e\})(H \setminus \{e\})$$

$$\supset a(H \setminus \{e\}) \cup b(H \setminus \{e\})$$

$$\supset (H \setminus ae) \cup (H \setminus be)$$

$$= H \setminus (ae \cap be)$$

$$= H.$$

Therefore, we have (xy)(xy) = H. \Box

When H is an H_v -quasigroup, if there is $x, y \in H$ such that xy = H, then clearly β is an equivalence relation and $H/\beta \cong \mathbb{Z}_1$.

LEMMA 2.4. Let $u_1 = H \setminus \{a\}$ and $u_2 = H \setminus K$ where $u_1, u_2 \in \mathcal{U}$ and $e \in u_1 \cap u_2$. If $u_1 \cup u_2 = H$, then β is an equivalence relation and $H/\beta \cong \mathbb{Z}_1$.

Proof. By the assumption, we have

$$u_{1}u_{2} \supset (H \setminus \{a\})(H \setminus K)$$

$$\supset e(H \setminus K) \cup (H \setminus \{a\})e$$

$$\supset (H \setminus eK) \cup (H \setminus ae)$$

$$= H \setminus (eK \cap ae).$$

We may assume that $u_1u_2 \neq H$. Then $eK \cap ae \neq \emptyset$ and so $eK \cap ae = ae$, since e is a weak scalar. Hence we have $u_1u_2 = H \setminus ae$. By the hypothesis, $K \cap \{a\} = \emptyset$ and $a \in u_2$. Hence we have $u_1u_2 \supset ea$ and $ae \neq ea$.

Therefore we have

$$u_1u_1 \supset (H \setminus \{a\})(H \setminus \{a\})$$

$$\supset e(H \setminus \{a\}) \cup (H \setminus \{a\})e$$

$$\supset (H \setminus ea) \cup (H \setminus ae)$$

$$= H \setminus (ea \cap ae)$$

$$= H.$$

Hence we have $H/\beta \cong \mathbb{Z}_1$. \Box

THEOREM 2.5. Let H_1 and H_2 be subsets of H where H_1 is a nonempty finite set and let $u_1 = H \setminus H_1$ and $u_2 = H \setminus H_2$ for some $u_1, u_2 \in \mathcal{U}$ and $e \in u_1 \cap u_2$. If $u_1 \cup u_2 = H$, then β is an equivalence relation and $H/\beta \cong \mathbb{Z}_1$.

Proof. We proceed by induction on the number of elements of the set H_1 . In case $|H_1| = 1$, it follows from Lemma ??.

Suppose that it is true for $|H_1| < n$.

Let $|H_1| = n$. Then we have $|H_1e|$, $|eH_1| \leq n$.

Since $u_1 \cup u_2 = H$, we have $H_1 \cap H_2 = \emptyset$. Hence, by the assumption, we have

$$u_{1}u_{2} \supset (H \setminus H_{1})(H \setminus H_{2})$$

$$= [(H \setminus H_{1}) \cup H_{2}][(H \setminus H_{2}) \cup H_{1}]$$

$$\supset e[(H \setminus H_{2}) \cup H_{1}] \cup [(H \setminus H_{1}) \cup H_{2}]e$$

$$\supset [(H \setminus eH_{2}) \cup eH_{1}] \cup [(H \setminus H_{1}e) \cup H_{2}e]$$

$$= [(H \setminus eH_{2}) \cup (H \setminus H_{1}e)] \cup eH_{1} \cup H_{2}e$$

$$= [H \setminus (eH_{2} \cap H_{1}e)] \cup eH_{1} \cup H_{2}e$$

$$= H \setminus [(eH_{2} \cap H_{1}e) \setminus (eH_{1} \cup H_{2}e)].$$

On the other hand, let

$$K_{11} = (eH_1 \cap H_1 e) \setminus (eH_2 \cup H_2 e)$$

$$K_{12} = (eH_2 \cap H_1 e) \setminus (eH_1 \cup H_2 e)$$

$$K_{21} = (eH_1 \cap H_2 e) \setminus (eH_2 \cup H_1 e)$$

$$K_{22} = (eH_2 \cap H_2 e) \setminus (eH_1 \cup H_1 e).$$

Then we have, $u_1u_2 \supset H \setminus K_{12}$ and similarly we have

$$u_1u_1 \supset H \setminus K_{11}, \quad u_2u_1 \supset H \setminus K_{21}, \quad \text{and} \quad u_2u_2 \supset H \setminus K_{22}.$$

Note that

$$\begin{aligned} K_{12} \cap K_{11} &= \left[(eH_2 \cap H_1 e) \setminus (eH_1 \cup H_2 e) \right] \cap \left[(eH_1 \cap H_1 e) \setminus (eH_2 \cup H_2 e) \right] \\ &= \left(eH_2 \cap H_1 e \cap eH_1 \cap H_1 e \right) \setminus \left(eH_1 \cup H_2 e \cup eH_2 \cup H_2 e \right) \\ &= \emptyset, \end{aligned}$$

$$egin{array}{rcl} u_1u_1 &\supset & (H\setminus H_1)(H\setminus H_1)\ &\supset & e(H\setminus H_1)\ &= & e[(H\setminus H_1)\cup H_2]\ &\supset & (H\setminus eH_1)\cup eH_2, \end{array}$$

and

$$egin{array}{rcl} u_1u_2 &\supset & (H\setminus H_1)(H\setminus H_2) \ &\supset & e(H\setminus H_2) \ &= & e[(H\setminus H_2)\cup H_1] \ &\supset & (H\setminus eH_2)\cup eH_1. \end{array}$$

Hence we have $u_1u_1 \cup u_1u_2 \supset [(H \setminus eH_1) \cup eH_2] \cup [(H \setminus eH_2) \cup eH_1] = H.$

Using the same method, we have

 $K_{11} \cap K_{21} = K_{11} \cap K_{22} = K_{12} \cap K_{21} = K_{12} \cap K_{22} = K_{21} \cap K_{22} = \emptyset$ and

 $u_1u_1 \cup u_2u_1 = u_1u_1 \cup u_2u_2 = u_1u_2 \cup u_2u_1 = u_1u_2 \cup u_2u_2 = u_2u_1 \cup u_2u_2 = H.$

(Case 1) $|K_{12}| = n$.

Since $|H_1e| \leq n$, we have $K_{12} = (eH_2 \cap H_1e) \setminus (eH_1 \cup H_2e) = H_1e$ and so $H_1e \subset eH_2$. Hence $K_{11} = (eH_1 \cap H_1e) \setminus (eH_2 \cup H_2e) = \emptyset$ and so $u_1u_1 \supset H \setminus K_{11} = H$.

(Case 2) $|K_{12}| < n$.

Subcase 2-1) $e \in K_{12}$.

Since $K_{12} \cap K_{11} = \emptyset$, we have $e \notin K_{11}$. Hence we have $e \in u_1u_1$. On the other hand, since $K_{12} \cap K_{21} = \emptyset$, we have $e \notin K_{21}$. Hence we have $e \in u_2u_1$. Therefore, $e \in u_1u_1 \cap u_2u_1$ and $u_1u_1 \cup u_2u_1 = H$. If $|K_{11}| = n$, then $|eH_1 \cap H_1e| = n$, since $|H_1e|$, $|eH_1| \leq n$. Hence we have $eH_1 = H_1e$ and so $K_{12} = \emptyset$. Therefore $u_1u_2 \supset H \setminus K_{12} = H$. If $|K_{11}| < n$, by induction hypothesis, we have $H/\beta \cong \mathbb{Z}_1$.

Subcase 2-2) $e \notin K_{12}$.

Then we have $e \in u_1u_2$. Since $u_1u_1 \cup u_2u_2 = H$, we have $e \in u_2u_2$ or $e \in u_1u_1$. Therefore, $e \in u_1u_2 \cap u_2u_2$ or $e \in u_1u_2 \cap u_1u_1$. Since $u_1u_2 \cup u_2u_2 = u_1u_2 \cup u_1u_1 = H$, by induction hypothesis, we have $H/\beta \cong \mathbb{Z}_1$. \Box

References

 D. Freni, Una nota sul cuore di un ipergruppo e sulla chiusura transitiva β^{*} di β,

Rivista Mat. Pura Appl., 8, 153-156. (1991).

- S. F. Marty, Sur une generalisation de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), pp. 45-49.
- T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfields, Proc. 4th Internat. Congress Algebraic Hyperstructures and Appl. (AHA, 1990) (World Scientific, Singapore, 1991), 203-211.
- 4. T. Vougiouklis, *Hyperstructures and their Representations*, Hadronic Press, Inc. (1994).

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

E-mail: dslee@math.cnu.ac.kr

**

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

E-mail: scchung@math.cnu.ac.kr