• Title/Summary/Keyword: sample-spacing

Search Result 64, Processing Time 0.025 seconds

Neuro-Fuzzy modeling of torsional strength of RC beams

  • Cevik, A.;Arslan, M.H.;Saracoglu, R.
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.469-486
    • /
    • 2012
  • This paper presents Neuro-Fuzzy (NF) based empirical modelling of torsional strength of RC beams for the first time in literature. The proposed model is based on fuzzy rules. The experimental database used for NF modelling is collected from the literature consisting of 76 RC beam tests. The input variables in the developed rule based on NF model are cross-sectional area of beams, dimensions of closed stirrups, spacing of stirrups, cross-sectional area of one-leg of closed stirrup, yield strength of stirrup and longitudinal reinforcement, steel ratio of stirrups, steel ratio of longitudinal reinforcement and concrete compressive strength. According to the selected variables, the formulated NFs were trained by using 60 of the 76 sample beams. Then, the method was tested with the other 16 sample beams. The accuracy rates were found to be about 96% for total set. The performance of accuracy of proposed NF model is furthermore compared with existing design codes by using the same database and found to be by far more accurate. The use of NF provided an alternative way for estimating the torsional strength of RC beams. The outcomes of this study are quite satisfactory which may serve NF approach to be widely used in further applications in the field of reinforced concrete structures.

Development of Multi-sample Loading Device for TEM Characterization of Hydroxyapatite Nanopowder

  • Lee, Jong-Moon;Kim, Jung-Kyun;Jeong, Jong-Man;Kim, Jin-Gyu;Lee, Eunji;Kim, Youn-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.788-792
    • /
    • 2013
  • A shortcoming of using transmission electron microscopy (TEM) for structural analysis via electron diffraction is the relatively large error of the measurements as compared to X-ray diffraction. To reduce these errors, various internal standard methods from earlier studies have been widely used. We developed a new device to facilitate the application of internal standard methods in preparation of TEM grids used for nanopowder analysis. Through the application of a partial mask on the TEM grid, both the internal standards and the research materials can be loaded on the same grid. Through this process, we conducted a TEM analysis that compared synthetic hydroxyapatite (HAp) nanopowder to bone apatite from a bovine femur. We determined that the accuracy of the d-spacing measurements of the HAp and bone powders could be improved to better than 1% after statistical treatments of the experimental data. By applying a quarter mask, we loaded four different nanoparticles on a single TEM grid, with one section designated for the internal standard.

Particle Velocity and Intensity Estimation Error in Spatial Discrete Domain (입자 속도 및 인텐시티를 공간 영역에서 이산화할 때 발생하는 오차)

  • 김양한;최영철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.352-357
    • /
    • 2004
  • This paper studies the errors that associated with particle velocity and intensity in a space. We theoretically derived their bias error and random error. The analysis shows that the more samples do not always guarantee the better results. The random error of the velocity and intensity are increased when we have many samples. The characteristics of the amplification of the random error are analyzed in terms of the sample spacing. The amplification was found to be related to the spatial differential of random noise. The numerical simulations are performed to verify theoretical results.

The Effect of Cooling Rate on the Solidification Behavior and Segregation of 7075 and 7050 Aluminum Alloys (7075 및 7050 알루미늄 합금의 응고 거동 및 편석에 미치는 냉각 속도의 영향)

  • Choi, Jeong-Yun;Kwon, Young-Dong;Lee, Joo-Won;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.343-349
    • /
    • 2001
  • The effect of cooling rate on the solidification microstructure and segregation behavior of 7075 and 7050 aluminum alloy was investigated. Samples were solidified with cooling rates from 0.3 to $17^{\circ}K/sec$. Using the cooling curves of each sample, liquidus, eutectic and intermetallic reaction temperatures were estimated. The microstructures were characterized in terms of dendrite arm spacing and eutectic volume fraction. The segregation behavior of each alloying element of these alloys in various cooling rates was discussed.

  • PDF

Zone-Melting Recrystallization of Si Films on $SiO_2$ with a Graphite-Strip-Heater (흑연 막대 발열체를 이용한 SOI구조의 Zone-melting 재결정화 연구)

  • 김현수;김춘근;민석기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.527-533
    • /
    • 1990
  • Zone-melting recrystallization (ZMR) system using two graphite heaters(a stationary sheet and a narrow movable bar) was constructed and implemented in recrystallization op Si films on insulating layers. The recystallized Si films were examined by Nomarski contrast optical microscopy after Dash etching, transmission electron diffraction pattern, and x-ray diffraction. With optimum conditions of process parameters(input powers of the bottom and upper heater, scanning speed of the upper heater, and the gap between sample and upper heater), the recrystallized Si layer has a (100) texture, but contains many subboundaries. The subgrains are misoriented by < 0.5\ulcorner and the average spacing between subboundaries is about 25\ulcorner.

  • PDF

Quantification of Particle Velocity and Intensity Estimation Error in a Discrete Domain (이산 영역에서 공간상의 입자속도, 인텐시티 예측 오차의 정량화)

  • 최영철;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.403-407
    • /
    • 2003
  • This paper studies the error of pressure, particle velocity, and intensity which are distributed in a space. Errors may be amplified when other sound field variables are predicted. We theoretically derive their bias error and random error. The analysis shows that many samples do not always guarantee good results. Random error of the velocity and intensity are increased when many samples are used. The characteristics of the amplification of the random error are analyzed in terms of the sample spacing. The amplification was found to be related to the spatial differential of random noise. The numerical simulations are performed to verify theoretical results.

  • PDF

Development of Hand-Held Type Sheet Resistance Meter Based on a Dual-Configuration Four-Point Probe Method (Dual-Configuration Four-Point Probe Method에 의한 휴대형 면저항 측정기 개발)

  • Kang, Jeon-Hong;Yu, Kwang-Min;Kim, Wan-Seop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.423-427
    • /
    • 2010
  • Portable sheet resistance-measuring instrument using the dual-configuration Four-Point Probe method is developed for the purpose of precisely measuring the sheet resistance of conducting thin films. While single-configuration Four-Point Probe method has disadvantages of applying sample size, shape and thickness corrections for a probe spacing, the developed instrument has advantages of no such corrections, little edge effects and measuring simply and accurately the sheet resistance between $0.2\Omega/sq$ and $2k\Omega/sq$.

A Study on the Sound Transmission Loss Measurement of Sound Isolation Sheets (차음시트의 음향투과손실 측정에 관한 연구)

  • Lee, Dong-Hoon;Kang, Moon;Lee, Ju-Weon;Jung, Gab-Cheol;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.409-414
    • /
    • 2000
  • A new impedance tube method is presented for the measurement of transmission loss of sound isolation sheets. The two-microphone method based on the sound decomposition theory proposed by Seybert and Ross is reviewed in this impedance tube method, which has been used for the determination of absorption coefficient of absorptive materials as well as transmission loss of automotive mufflers. Sound transmission losses for rubber, polyvinyl and asphalt sheets are measured in an impedance tube and reverberation room facility, respectively. By comparing two measurement methods, the reliability of impedance tube method used in this study is validated. From the experimental results, it is shown that the accuracy of sound isolation capability obtained by the impedance tube method depends upon the microphone spacing and the distance of the first microphone from the test sample surface.

  • PDF

Effects of Tensile Properties and Microstructure on Abrasive Wear for Ingot-Slicing Saw Wire (잉곳 슬라이싱용 Saw Wire의 연삭마모에 미치는 인장특성과 미세조직의 영향)

  • Hwang, Bin;Kim, Dong-Yong;Kim, Hoi-Bong;Lim, Seung-Ho;Im, Jae-Duk;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.334-340
    • /
    • 2011
  • Saw wires have been widely used in industries to slice silicon (Si) ingots into thin wafers for semiconductor fabrication. This study investigated the microstructural and mechanical properties, such as abrasive wear and tensile properties, of a saw wire sample of 0.84 wt.% carbon steel with a 120 ${\mu}M$ diameter. The samples were subjected to heat treatment at different linear velocities of the wire during the patenting process and two different wear tests were performed, 2-body abrasive wear (grinding) and 3-body abrasive wear (rolling wear) tests. With an increasing linear velocity of the wire, the tensile strength and microhardness of the samples increased, whereas the interlamellar spacing in a pearlite structure decreased. The wear properties from the grinding and rolling wear tests exhibited an opposite tendency. The weight loss resulting from grinding was mainly affected by the tensile strength and microhardness, while the diameter loss obtained from rolling wear was affected by elongation or ductility of the samples. This result demonstrates that the wear mechanism in the 3-body wear test is much different from that for the 2-body abrasive wear test. The ultra-high tensile strength of the saw wire produced by the drawing process was attributed to the pearlite microstructure with very small interlamellar spacing as well as the high density of dislocation.

Influence of ITO Thickness on the Deformation and Cracking Behaviors of ITO/PET Sheets (ITO층의 두께에 따른 ITO/PET sheet의 변형거동 및 균열 형성 거동)

  • Kim, Jin-Yeol;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this study, the stress-strain response and the cracking behaviors of ITO film on a PET substrate are investigated. The cracking behaviors of ITO thin films deposited on a thermoplastic semi-crystalline polymer developed for flexible display applications was investigated by means of tensile experiments equipped with an electrical measurement apparatus and an in-situ optical microscope. Electrical resistance increased gradually in the elastic-to-plastic transition region of the stress strain curves and cracks formed. Numerous cracks were found in this region, and the increase of the resistance was linked to the cracking of ITO thin films. Upon loading, the initial cracks perpendicular to the tensile axis were observed at about 1% of the total strain. They propagated to the entire sample width as the strain increased. The spacing between the horizontal cracks is thought to be determined by the fracture strength and the thickness of the ITO film as well as by the interfacial strength between the ITO and PET. The effect of the strain rate on the cracking behavior was also investigated. The crack density increased as the strain increased. The spacing between the horizontal cracks (perpendicular to the stress axis) increased as the strain rate decreased. The increase of the crack density as the strain rate decreased can be attributed to the higher fraction of the plastic strain to the total strain at a given total strain. The higher critical strain for the onset of the increase in the resistance and the crack initiation of the ITO/PET with a thinner ITO film (300 ohms/sq.) suggests a higher strength of the thinner ITO film.