• 제목/요약/키워드: robust nonlinear filter

검색결과 79건 처리시간 0.026초

선형화 오차에 강인한 확장칼만필터 (An Extended Kalman Filter Robust to Linearization Error)

  • 혼형수;이장규;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.93-100
    • /
    • 2006
  • In this paper, a new-type Extended Kalman Filter (EKF) is proposed as a robust nonlinear filter for a stochastic nonlinear system. The original EKF is widely used for various nonlinear system applications. But it is fragile to its estimation errors because they give rise to linearization errors that affect the system mode1 as the modeling errors. The linearization errors are nonlinear functions of the estimation errors therefore it is very difficult to obtain the accurate error covariance of the EKF using the linear form. The inaccurately estimated error covariance hinders the EKF from being a sub-optimal estimator. The proposed filter tries to obtain the upper bound of the error covariance tolerating the uncertainty of the error covariance instead of trying to obtain the accurate one. It treats the linearization errors as uncertain modeling errors that can be handled by the robust linear filtering. In order to be more robust to the estimation errors than the original EKF, the proposed filter minimizes the upper bound like the robust linear filter that is applied to the linear model with uncertainty. The in-flight alignment problem of the inertial navigation system with GPS position measurements is a good example that the proposed robust filter is applicable to. The simulation results show the efficiency of the proposed filter in the robustness to initial estimation errors of the filter.

An Extended Robust $H_{\infty}$ Filter for Nonlinear Constrained Uncertain System

  • Seo, Jae-Won;Yu, Myeong-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.565-569
    • /
    • 2003
  • In this paper, a robust filter is proposed to effectively estimate the system states in the case where system model uncertainties as well as disturbances are present. The proposed robust filter is constructed based on the linear approximation methods for a general nonlinear uncertain system with an integral quadratic constraint. We also derive the important characteristic of the proposed filter, a modified $H_{\infty}$ performance index. Analysis results show that the proposed filter has robustness against disturbances, such as process and measurement noises, and against parameter uncertainties. Simulation results show that the proposed filter effectively improves the performance.

  • PDF

Robust Nonlinear H$\infty$ FIR Filtering for Time-Varying Systems

  • Ryu, Hee-Seob;Son, Won-Kee;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.175-181
    • /
    • 2000
  • This paper investigates the robust nonlinear H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for nonlinear discrete time-varying uncertain systems represented by the state-space model having parameter uncertainty. Firstly, when there is no parameter uncertainty in the system, the discrete-time nominal nonlinear H$_{\infty}$ FIR filter is derived by using the equivalence relationship between the FIR filter and the recursive filter, which corresponds to the standard nonlinear H$_{\infty}$ filter. Secondly, when the system has the parameter uncertainty, the robust nonlinear H$_{\infty}$ FIR filter is proposed for the discrete-time nonlinear uncertain systems.

  • PDF

확장 강인 칼만 필터를 이용한 접근 탄도 미사일 추적 시스템 설계 (Design of Incoming Ballistic Missile Tracking Systems Using Extended Robust Kalman Filter)

  • 이현석;나원상;진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.188-188
    • /
    • 2000
  • The most important problem in target tracking can be said to be modeling the tracking system correctly. Although the simple linear dynamic equation for this model has used until now, the satisfactory performance could not be obtained owing to uncertainties of the real systems in the case of designing the filters baged on the dynamic equations. In this paper, we propose the extended robust Kalman filter (ERKF) which can be applied to the real target tracking system with the parameter uncertainties. A nonlinear dynamic equation with parameter uncertainties is used to express the uncertain system model mathematically, and a measurement equation is represented by a nonlinear equation to show data from the radar in a Cartesian coordinate frame. To solve the robust nonlinear filtering problem, we derive the extended robust Kalman filter equation using the Krein space approach and sum quadratic constraint. We show the proposed filter has better performance than the existing extended Kalman filter (EKF) via 3-dimensional target tracking example.

  • PDF

Hybrid Adaptive Volterra Filter Robust to Nonlinear Distortion

  • Kwon, Oh-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권3E호
    • /
    • pp.95-103
    • /
    • 2008
  • In this paper, the new hybrid adaptive Volterra filter was proposed to be applied for compensating the nonlinear distortion of memoryless nonlinear systems with saturation characteristics. Through computer simulations as well as the analytical analysis, it could be shown that it is possible for both conventional Volterra filter and proposed hybrid Volterra filter, to be applied for linearizing the memoryless nonlinear system with nonlinear distortion. Also, the simulations results demonstrated that the proposed hybrid filter may have faster convergence speed and better capability of compensating the nonlinear distortion than the conventional Volterra filter.

A Krein Space Approach for Robust Extended Kalman Filtering on Mobile Robots in the Presence of Uncertainties

  • Jin, Seung-Hee;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1771-1776
    • /
    • 2003
  • In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter.

  • PDF

접근 탄도미사일 추적시스템을 위한 좌표변환 확장강인칼만필터 설계 (Design of a Coordinate-Transformation Extended Robust Kalman Filter for Incoming Ballistic Missile Tracking Systems)

  • 신종구;이태훈;윤태성;최윤호;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.22-30
    • /
    • 2003
  • A Coordinate-Transformation Extended Robust Kalman Filter (CERKF) designed in the Krein space is proposed, and then applied to a nonlinear incoming ballistic missile tracking system with parameter uncertainties. First, the Extended Robust Kalman filter (ERKF) is proposed to handle the nonlinearity of measurement equation which occurs whenever the polar coordinate system is transformed into the Cartesian coordinate system. Moreover, linearization error inevitably occurs and deteriorates the tracking performance, which is considerably reduced by the proposed CERKF. Through the simulation results, we show that the proposed CERKF, which uses the measurement coordinate system, has less RMS error than the previous ERKF which is designed in the Krein space using the Cartesian system. We also verify that the robustness and the stability of the proposed filter are guaranteed in two radars: the phased way radar and the scanning radar

Design of An Extended Robust H$\infty$ Filter

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Cha- Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.77.3-77
    • /
    • 2001
  • An extended robust H$\infty$ filter is proposed for a nonlinear uncertain system. We also analyze the characteristics of the proposed filter such as an H$\infty$ performance criterion using the Lyapunov function method. The analysis results show that proposed filter has a robustness against disturbances such as process and measurement noises and against parameter uncertainties. Then the in-flight alignment for a strapdown inertial navigation system is designed using the presented filter. Simulation results show that the proposed filter effectively improve the performance.

  • PDF

글린트잡음을 갖는 비선형 시스템에 대한 하이브리드 필터 설계 (Hybrid Filter Design for a Nonlinear System with Glint Noise)

  • 곽기석;윤태성;박진배;신종구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.26-29
    • /
    • 2001
  • In a target tracking problem the radar glint noise has non-Gaussian heavy-tailed distribution and will seriously affect the target tracking performance. In most nonlinear situations an Extended Robust Kalman Filter(ERKF) can yield acceptable performance as long as the noises are white Gaussian. However, an Extended Robust $H_{\infty}$ Filter (ERHF) can yield acceptable performance when the noises are Laplacian. In this paper, we use the Interacting Multiple Model(IMM) estimator for the problem of target tracking with glint noise. In the IMM method, two filters(ERKF and ERHF) are used in parallel to estimate the state. Computer simulations of a real target tracking shows that hybrid filter used the IMM algorithm has superior performance than a single type filter.

  • PDF

김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법 (Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker)

  • 한슬기;이혜경;나원상;박진배;임재일
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.