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Robust Nonlinear A FIR Filtering for Time-Varying Systems

Hee-Seob Ryu, Won-Kee Son and Oh-Kyu Kwon

Abstract: This paper investigates the robust nonlinear H_ filter with FIR(Finite Impulse Response) structure for nonlinear discrete
time-varying uncertain systems represented by the state-space model having parameter uncertainty. Firstly, when there is no parame-
ter uncertainty in the system, the discrete-time nominal nonlinear H_ FIR filter is derived by using the equivalence relationship
between the FIR filter and the recursive filter, which corresponds to the standard nonlinear H_ filter. Secondly, when the system
has the parameter uncertainty, the robust nonlinear H, FIR filter is proposed for the discrete-time nonlinear uncertain systems.
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I. Introduction

Over the past several years, the problem of the nonlinear
H,, filtering has been studied by a number of authors
[4][6][12]. There are two approaches commonly used for pro-
viding solutions to nonlinear H_, control and filtering prob-
lems. One is based on the dissipativity theory and the differen-
tial game theory. Another is based on the nonlinear version of
the classical Bounded Real Lemma developed by Willems
[14] and Hill and Moylan [5]. However, the nonlinear H,
filters proposed so far are mainly limited to time-invariant
systems. Therefore they can not to be applied to general time-
varying systems on the infinite horizon since one of two Ric-
cati differential equations required to solve the problem can
not be computed on the infinite horizon. To solve this problem,
Kwon et al. [10][11] have proposed the robust H, FIR filter
for general time-varying system. However, their filter is lim-
ited to linear systems, and it is not to be directly applied to
nonlinear systems.

This paper deals with the issue of the robust nonlinear H_
filtering problem for discrete time-varying systems with the
parameter uncertainties on the infinite horizon. The basic idea
of the current paper is to formulate the robust nonlinear H,
filtering problem on the discrete-time moving horizon and to
adopt the FIR (Finite Impulse Response) filter structure. FIR
filters are widely used in the signal processing area, and they
were utilized in the estimation problem as the optimal FIR
filters [7][8][9]. Since the optimal FIR filters use the finite
observations only over a finite preceding time interval, they
can overcome the divergence problem and have the built-in
BIBO (Bounded Input/Bounded Output) stability and the ro-
bustness to the numerical problems such as coefficient quanti-
zation errors and roundoff errors, which are well known prop-
erties of the FIR structure in signal processing area. Also note
that IIR (Infinite Impulse Response) or recursive filter struc-
ture requires the initial conditions on each horizon, which is an
impractical assumption, but that FIR filter structure does not
requires the initial conditions. The optimal FIR filters are,
however, presented so far not in the H, setting but in the
minimum variance formulation.

The nonlinear H_ filter proposed is to be called hereafter
as the robust nonlinear H, FIR filter in the sense that it is a
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nonlinear H, filter with the FIR structure for uncertain sys-
tems. It will be shown that the nonlinear H, FIR filter al-
ways has a solution if the standard nonlinear H_ filter exists
on the finite horizon. Therefore, the derivation for H, FIR
filter solution for infinite horizon is very simple and trivial. It
is noted that the nonlinear filter proposed works on the time-
varying nonlinear systems with time-varying parametric un-
certainties, and that this point will be one of the main
contributions of the current paper.

For the case when there is no parameter uncertainty -in the
system, we are concerned with designing a nonlinear H,
FIR filter such that the induced /, operator norm of the map-
ping from the noise signal to the estimation error is within a
specified bound. It is shown that this problem can be solved
via one Riccati equation. The design of nonlinear filters which
guarantee a prescribed H, performance in the presence of
parameter uncertainty are also considered. In this situation, a
solution is to be obtained in terms of two Riccati equations.

I1. Problem formulation
Consider the uncertain nonlinear time-varying system of the

form
X = (A + A4 )x + Gglx,) + Bw, ey
Vi =(C+AC)x;, + Hh(x,) + Dw, )
2 = Lxy, (3)

where x, eR" is the state vector with the initial state x,
unknown, w, €R? is a noise signal which belongs to
L[0,%0), y, €R™ is the measurement, z, €R” is a linear
combination of state variables to be estimated, g():R" —
R" and h():R" - R™ are known nonlinear vector func-
tionsand 4, B, C, D, G, H and L are known real
time-varying matrices of appropriate dimensions that describe
the nominal system together with g(-) and A(:) . The matri-
ces A4, and AC, represent time-varying parameter uncer-
tainties in 4 and C, respectively. These uncertainties are
assumed to be of the following structure

{AA’( } [Hl }
= F.E, 4)
AC, | | H,

where F, is an unknown real time-varying matrix satisfying

FIF <1,k=0]12,- )
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and H,, H, and E are known real constant matrices of
appropriate dimensions that specify how the elements of the
nominal matrices 4 and C are affected by the uncertain
parameters in Fj, .

Assumption 1:

(a) [D H, H] is of the full row rank;

(b) DB"=0;

(c) g(0)=0;

(d) There exist known constant matrices Vv, and V, such

that forany x, and x, eR",

lea) — g < Vi (xy = %))
[2(x,) = ()| < P (xy - x5).

Assumption 1(a) and 1(b) means that the robust H, FIR
filtering problem is ‘nonsingular’. Observe that if the parame-
ter uncertainty and the nonlinearity in the output matrix disap-
pear, ie. H,=0 and H =0, Assumption 1(a) reduces to
DD >0, which is a standard assumption in the H_ FIR
filtering problem for the nominal system. Assumption 1(c)
means that the initial condition of the nonlinearity function in
the state matrix is zero.

Observe that discrete-time nonlinear models of the form
(1)-(2) can be used to represent many important physical sys-
tems. The parameter uncertainty in the linear terms can be
regarded as the variation of the operating points of the nonlin-
ear system. We also note that the parameter uncertainty struc-
ture of (4) has been widely used in the problems of robust
control and robust filtering and can capture the uncertainty in
a number of practical situations.

In this section we are concerned with designing a nonlinear
causal filter I with FIR structure for estimating z, witha
guaranteed performance in a H, sense, using the measure-
ments Y, ={y;,j=0,,---k—1} and where no a priori esti-
mate of the initial state of (1) is assumed. Letting z, denote
the estimate of z,, the filter is required to guarantee a uni-
formly small estimation error z, —z,,, for any w e€/[0,)
and x, eR". Then the robust nonlinear H, FIR filtering
problem is formulated as follows:

Given the system (1)-(3) and a prescribed level of noise at-
tenuation y >0 on each horizon [k — N.,k], find a causal
filter 3 such that the filtering error dynamics is globally
uniformly asymptotically stable and ]|z—zg||2<}/{|]wi|f\,2
+x0 Rxy} for any non-zero (x,,w) e R" ® L[0,0) and for all
uncertainties satisfying (4)-(5), where R=R" >0 is a given
weighting matrix for x, and ‘@’ means the direct sum of
Te on the infinite
horizon and |y, denotes the usual 1, -norm on the moving
horizon [k — N,k].

Provided that there is no parameter uncertainty in the sys-
tem, ie, A4, =0 and AC, =0 for all &k in the above
formulation, the problem reduces to the nominal nonlinear
H,, FIR filtering problem, which corresponds to the nonlin-
ear H_ filtering problem.

Note that the performance index in the above problem
statements is a worst-case performance measure and can be
viewed as a generalization of the standard H_ performance

the vector subspaces. Here, ||e|| denotes e

measure to deal with unknown initial state. The weighting
matrix, R, is a measure of the uncertainty in x, relative to
the uncertainty in w. A ‘large’ value of R indicates that the
initial state is likely to be very close to zero.

In the current paper, the FIR filter is defined as follows

2k +1k;N) = Zi:T(k,i;N)y(i)
i=k-N

2(k +1Jk; Ny = L(k + 1)E(k + 1)k; N),

where T(k,;N) is the finite impulse response with the finite
duration N . This FIR filter is a kind of the one-step-ahead
predictor since it estimates the state or the output at the time
point k£ +1 based on the observation on [£— N,k]. The
H,_ FIR filter is obtained by constructing its impulse re-
sponse from that of the H,, filter on the finite moving hori-
zon [k— N,k].

We end this section by recalling a version of the bounded
real lemma for linear discrete time-varying systems, which
will be used in the derivation of a solution to the above filter-
ing problems.

Consider the following linear time-varying system

Xpa = AeX + Bowy 6)
2, = Cxy, @)

where x, €R" is the state vector with the initial state x,
being unknown, w, eR? is the input which belongs to
L[0,0), zz €eR? is the measurement, and 4,, B, and
C, are known bounded real time-varying matrices. Also, we
define the following worst-case performance measure for the
system (6)-(7):

Hne

Z

J(z,w,x;,R)= sup | —5—— s
0 (%9, )20 ”W||12vz +xOTR.x0

where R=RT >0 is a given weighting matrix for the initial
state and 0= (x;,w) e R" ®,[0,0) . Then, we have the fol-
lowing result.

Lemma 1 [16]: Consider the system (6)-(7) and let y >0
be a given scalar. Then, the following statements are equiva-
lent:

(a) The system (6) is exponentially stable and J <y ;
(b) There exists a bounded time-varying matrix @, = 9/ 20,
Vk 20, satisfying I —y2C,0,CI >0, Vk =0, and such that

AO A = Oy + 7 40,CLUT -y C0.C)!
CO A +BB{ =0, Q=R",
and the system
_ -2 T -2 Ty-1
Yo =LA +y 40, G (T -y GGG Y Gl

is exponentially stable;

(c) There exists a bounded time-varying matrix P, = B’ >0,
Vk >0, satisfying 1-y 2Bl P, B, >0, Vk>0, and such
that

AP A~ P+ y 4 P B.(I-yB{P,\B,)"
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Bl B, 4, +C[C, <0, PR <yR
Observe that when the initial state of (6) is zero, the perform-

ance index J(z,w,xy,R) becomes the usual H, perform-
ance measure, namely

J(z,w)= sup M=l .
02 (xg, ek 10 ||| Wily,

The index of performance J(z,w) can be viewed as the
limit of J(z,w,x,,R) as the smallest eigenvalue of R ap-
proaches infinity. In this case it happens that (, =0 in the
statement (b) of Lemma 1 while the requirement F < ¥*R in
the statement (c) will become superfluous.

Firstly, in the current paper, the nonlinear H, FIR filter-
ing problem will be solved, and then the robust nonlinear H,,
FIR filtering problem is to be dealt with. It is noted that the
problem does not need the assumption of stabilizability or
detectability of the system since it is formulated on the finite
moving horizon.

IIL. Nonlinear H,, FIR filters

In the sequel we shall provide a solution to both the prob-
lems of nominal and robust H_ filtering with FIR structure
using a Riccati equation approach. We first present a perform-
ance analysis result for the system (1)-(3).

Theorem 1. Consider the system (1)-(3) satisfying As-
sumption 1. Given a scalar y >0 and an initial state weight-
ing matrix R=R" >0 then, the system (1) is globally uni-
formly asymptotically stable and | z|l<y{llw|}, +
xIRx,}V? for any nonzero (x,,w) €R"@® L[0,00) and for
all AA, satisfying (4)-(5) if there exist a scalar £¢>0and a
bounded time-varying matrix Q, = Q,(T 20, Vk 20, satisfying
I-y7B0Q,.,B,>0, Vk >0, and such that

ATanA -0+ 7_2ATQk+lBl(1 - 7_2B1TQk+lBl)_lB]TQk+1A

+IL+ ETE+VV, <0, @, <y°R,
where
B = [3 —Z—Hl yG} . ®)

Proof: Define a Lyapunov function candidate V(x,)=
x{Q,x, . Since 8,1<Q, <8,I, V(x,) is positive definite
and decrescent. It can be easily shown that
AV{(x )= V(xp)=V(x)< -8 xI' along the trajectory of
(1). Hence, V(x,) is a Lyapunov function and the system
(1) is globally uniformly asymptotically stable. Remaining
parts of the proof can be easily established similarly to the
proof of Theorem 4.2 in [15]. [ ]

In the case when there is no parameter uncertainty in (1),
Theorem 1 reduces to the following corollary.

Corollary 1: Consider the system (1)-(3) with A4, =0
and satisfying Assumption 1. Given a scalar y >0 and an
initial state weighting matrix R=RT >0 then, the system of
(1) is globally uniformly asymptotically stable and
|z < #4l| wifz, +xI Rx,}''* for any non-zero (x,,w) cR" @
L,[0,00) if there exist a scalar £>0 and a bounded time-

varying matrix O, = of 20, Vk 20,
I-72BlQ,,,B,>0, Yk20, and such that

ATQk+1A -0+ 7_2ATQk+l§1(1 - 7-2§1TQk+1§l)_1§1TQk+1A
+L'L+vV, <0, Qy<r*R,

satisfying

where 1—3—1 =[B yG]

Note that when the initial state of the system (1) is known to
be zero, the time-varying matrix (), in Theorem 1 and Cor-
ollary 1 may be replaced by a constant matrix Q= o7 =0
Furthermore, the condition Q< }/2R will no longer be re-
quired as an initial state which is certain to be zero corre-
sponds to choosing a "very large’ value of R.

We now present a solution to the nominal nonlinear
FIR filtering problem for the system (1)-(3).

Theorem 2: Consider the system (1)-(3) with A4, =0
and AC, =0, and satisfying Assumption 1. Given a scalar
7 >0 and an initial state weighting matrix R = RT >0, the
nominal nonlinear H, FIR filtering problem is solvable if
there exists a bounded time-varying matrix S, = S,(T >0,
Vk >0, satisfying 1—y2LS,L >0, Vk2>0,

Sy, = AS, AT - (4S,CT + BDI)(CS,C" + R)™
(CS, AT+ DBTY+ BB, S,=R7, 9)
and the system
Pt = Ay
=[4-(4S,CT + BDIYR+CS,CT)'Clp,  (10)
is exponentially stable, where
~ T
IL=rc+vv, v=[W ¥J],
B=[B G 0], D=[D 0 ]

~ C . D - ART
G = _1~’D1=D> R=DD 0.
v L 0 0 -7
Moreover, if the above conditions hold, a suitable nonlinear

filter is given by
Xoekary = Axg +Gglx ) + Koy —Cxy — Hh(x,)]  (11)

Zop = Lx g, (12)
where

K, =(4S,CT+BD")CS,C" + DDT)™! (13)

S, =8, +728, LTI -y LS, L") LS. (14)

Proof: Firstly, note that the condition - }/‘2ZSkZT R
Vk 20, together with Assumption 1 guarantees the non-
singularity of the matrix R+ GS,(GT, Vk20. Letting
Xy =x,—x, and e, =z, —z,,it follows from (1)-(3) (set-
ting A4, =0 and AC, =0)and (11)-(12) that

X = (A= Ky O%, + (G — Ky H)E(x,,Xg)
+(B- K, D)w, (15)

e, = L%, (16)
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where

_[#t0- g0
$0xps Xet) = [h(xk) —h(xek)]

and G=[G o] H,=[0 H].
Note that by Assumption 1, [|&€(x;,x,)I|<|[VX, |-

It can be shown from (9) that Q, =725, is such that
I-LQI" >0, Vk20, and satisfies

(A= K4 C)Q, (A~ K4C) ~ Oy +(A~ KOO LT
U-LQIL)'LQ(A-K,C) +y BB =0,
Q, =y R, an

where B, =[(B-K,D) (G, —K,H))].
Also, it is easy to verify that the state matrix A4, of the sys-
tem of (10) can be rewritten as

Ay =(A- KOl +Q,L"(I-LQ, I

Since the system of (10) is exponentially stable, in view of
Lemma 1 and Corollary 1, (17) implies that the estimation
error dynamics of (15)-(16) is globally uniformly asymptoti-
cally stable and || e||< y{|{ w|f, +x]Rx,}"'* for any non-zero
(xp,w) €eR"DL[0,00) . [ |

When the initial state of the system of (1) is known to be
zero, and a stationary filter design is concerned, Theorem 2
can be specialized as follows.

Theorem 3: Consider the system (1)-(3) with x,=0,
A4, =0, AC, =0, and satisfying Assumption 1. Given a
scalar y>0 and an initial state weighting matrix
R=R">0, the nominal nonlinear H, FIR filtering prob-
lem 1is solvable if there exists a stabilizing solution
§=8">0, tothe algebraic Riccati equation

S =ASAT —(ASCT + BDTY(CSCT + R)™
(CS4a” + DBT)+ BB (18)

such that 7 —y77 LSL” > 0.Moreover, if the above conditions
hold, a suitable nonlinear filter is given by (11)-(12), where
the filter gain of (13) is constant. [ ]

It should be pointed out that in Theorems 2 and 3 no stabil-
ity requirement is imposed on the system (1). We also observe
that, when there are no nonlinear terms in the system (1)-(2),
ie. g()=0 and A()=0, the result of Theorem 3 will re-
duce to the H_ FIR linear filter.

IV. Robust nonlinear H,, FIR filters

Next, we solve the robust nonlinear H,_ FIR filtering
problem. To this end, we shall make a further assumption on
the system (1).

Assumption 2: The nominal state matrix 4 is nonsingular.

Theorem 4: Consider the uncertain system (1)-(3) satisfy-
ing (4)-(5) and Assumptions 1-2. Let v>0 be an arbitrary
small scalar. Given a scalar y >0 and an initial state
weighting matrix R=R” >0, the robust H, FIR filtering
problem is solvable if for some scalar &> 0, the following
conditions hold:
(a) There exists a stabilizing solution P=P7>0 to the

algebraic Riccati equation:
A"PA-P+y4"PB/(1-y*BI PB))" B! P4
+E[E, +vI=0 (19)

such that /-y 2B/ PB >0, and P<y’R, where B, is
asin (17) and

E[E =ETE+V]V,, (20)

(b) There exists a bounded time-varying matrix S, = SkT 20,
Vk 20, satisfying /- 7’2LSkLT >0, Yk 20, and such that

Sy, = AS, AT —(4S,CT + BDIYC,S,CT +R)™!
(CS, AT+ DBy +BBT, S,=(R-yP)", 1)
and the system
Pir1 = APy
=[A-(4S,CT + BD))CGS,CT+ R Clo,  (22)

is exponentially stable, where

Fi=rr+vtv, v=[" 77, 23)
¢ {yfi] 5, {;?J, k:[Df))T _OI], o
A=A+Ad, = A+yBBT(P"' -y BBT)' 4, 25)
C=C+AC,=C+yDB" (P -y 2B BT)" 4, (26)
B=[BM G 0] Q@7
D=[Dm 0 ] (28)
E:[B ZHI}, 5:[1) ZHZ}, 29)
& &
M=[I+y?B"(P"'-yBB"B]*. (30)

Moreover, if conditions (a) and (b) are satisfied, a suitable
nonlinear filter is given by

Xe(k+1) = /ixek +Gg(xy )+ Kyly, — éxek = Hh(x,)]l (1)

Zg = Lx,, (32)
where

K, =(AS,C" + BD"Y(CS,CT + DDT)™! (33)

Sy =8, +y 728, LTI -y LS, LTY ' LS, . (34)

Proof: First, note that since P>0and -y Bl PB, >0,
it follows that the matrix P~' -y 2B Bl is positive definite.
Hence, the coefficient matrices of (21) are well defined.
Moreover, the condition / — }/_2 A;[S,( MT> 0, Vk=z0, to-
gether with Assumption 1(a) guarantee the non-singularity of
CS,CT+R forall Vkz20.

Next, we rewrite the filter (31)-(32) in the following form :
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xe(k+l) = (A + AAe)xek + Gg(xek)
K[y —(C+AC,)x, — Hh(x )] (35)

Zg = Mxy, (36)

where A4, and AC, are given in (25)-(26), respectively.
We note that A4, and AC, reflect the effect of the parame-
ter uncertainties A4; and AC, on the filter structure.
When A4, and AC, in the system (1)-(3) disappear, A4,
and AC, in (35) will naturally be set to zero.

Defining X =x—x,, from (1)-(3) and (35)-(36) we obtain
that

Men1 = (Ac + HchEc)']k + Gcgc (xkaxek) + Bcwk (37)

& =Gl '7=[XT ET]T, (38)

where e=z-1z,,

[ A 0

A =

¢ |- (A, —K4AC,) A+A4 - K, (C+ AC‘,)}

I L

BC = y HC =
| B-K,D L -K,L,

C,=[0 M], E.=[E 0]

g(x)

gc(xk’xek) = g(xk)_g(xek) -
h(x) —hxy)

(G 0 0
o G -KuH[

Note that by Assumption 1 we have that
[FXEEM AT

where V =diag(V,,V) and V isasin(23).
Next, it can be shown by using standard, but tedious, matrix
manipulations that

-1
x =l 0 (39)
0 7S,

where P and S, are the required solutions of (19) and (21)
satisfies

AcSkAcT - Xyt AchécT(I - CA'chécT)_l
CX,AT+BB. =0, X,=R, (40)

where R = a’iag(P,}/zR -P)>0.
We now show that X, given in (39) is such that the time-
varying system

Prar = Aepy =[ 4, + A X,CTU-CX,CDH'C o (4D)

is exponentially stable. It can be shown that

i =[A 0 }
¥ Ay
where A,, is as in (22), ‘*° denotes entries which are

bounded but irrelevant, and

A=A+y?B(I-y2BlPB)"' Bl PA.

Note that as P is the stabilizing solution of (19), A is
Schur stable. Moreover, since the system (22) is exponentially
stable, it follows that the system (41) is exponentially stable as
well. Hence, X, is the stabilizing solution of (40).

By Lemma 1, this implies that there exist a scalar &, >0
and a bounded time-varying matrix ¥, = YkT >0, Vk=0,
satisfying [ — l:}CTYkHlA?C >0, Vk20, andsuch that

ATV A, =Y, + ATY, \B.(I - BIY, B,y BIY, ., 4,
+CIC. <0; Y, <R
Now, taking into account that

- e [V 0
ET¢, =CTC, +£%ETE, +VTV+[‘; 0},

we obtain that Y, satisfies the following inequality
ATV A=Y+ ATY (B~ BIY, (BB 4,
+CTC,+&ETE,+VV <0, Y, <R.

Also, note that ngﬁ 7o = ¥*x4 Rx,. Finally, in view of the
definition of B’C , it follows from Theorem 1 that the estima-
tion error system (37)-(38) is globally uniformly asymptoti-
cally stable and

llell< 7 {ll ik, +xg Rx} (42)

for all non-zero (x5, w) e R" @ [,{0,0) and for all admissible
uncertainties. [ ]

The arbitrary small scalar v>0 is introduced in Theorem
4 to guarantee that the stabilizing solution of (19) is positive
definite. In the case when E[E >0, or the pair (4,E,) has
no unobservable modes in the closed unit disk, v can be set
to zero.

We observe that the existence of a matrix P satisfying
condition (a) of Theorem 4 will guarantee the global uniform
asymptotic stability of the uncertain system (1) for all uncer-
tainties satisfying (4)-(5). Note that due to the existence of
parameter uncertainty in (1), the requirement of global asymp-
totic stability of (1) is needed in order to ensure the bounded-
ness of the estimation error dynamics for all admissible uncer-
tainties.

It should be noted that the result of Theorem 4 does not re-
cover that of Theorem 2 when the uncertainties A4, and
AC, disappear. The reason for this is because when parame-
ter uncertainty exists an asymptotic stability requirement has
to be imposed on the system of (1), which gives rise to (19) of
Theorem 4.

V. Example

To demonstrate the use of the above theory we consider the
robust nonlinear H, FIR filter for a simple second-order
problem. We show the advantage of the proposed technique by
comparing its results with the corresponding results of the
H_ nonlinear estimator of Shaked and Berman [13] and the
extended Kalman filter (EKF), which has been widely used in
the past in estimation of nonlinear systems.

Consider the time-invariant process with a saturating non-
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nonlinearity in the system dynamics

x1i+l _ /txll- 04 0.5
l:xz,.“:, - |:tan'1 (ﬂxl,- + ﬂ'x2,- ):l + l:0'4:| (x)E(x;)+ I:I.S]Wi’ (43)

where =091, 7=-007, A=01, E(x)=[0 1]x, and
|F(x)I<1, Vie[0,N] and Vx, eR*.
We assume here that the measurement is described by

¥; = c0s(2x, ) +3x,, + 2F(x)E(x;) + 001w, . (44)

We consider the time interval N =500, and we are looking
for an estimate of Lx;, where L= [1 O]. We also assumed
that {w;} are uncorrelated standard gaussian white noise
processes for the comparison of simulation results between
robust nonlinear H, FIR filter and EKF.

o 100 I 200 Z50 300 360 %00 @50 oo

Fig. 1. Estimation error of the robust H, FIR filter.

D

—o.as -

55 00 T6o 200 250 500, 360 “o0 w50 oo
Tirr.

Fig. 2. Estimation error of the robust H,, filter.

3 700 750 260 500 S50 “o0 aso oo

S50
Tirnetsea.)

Fig. 3. Estimation error of the extended Kalman filter.

We have simulated the above three estimators for the worst
values of the uncertainty F, namely for each estimator we
describe the estimators. Fig. 1, 2 and 3 show the estimation
error that have been obtained for the three estimators, where
F =1 for the robust nonlinear H, FIR filter, the robust
nonlinear H_ filter of Shaked and Berman [13] and the EKF
and y for the robust nonlinear H, FIR filter and robust
nonlinear H_ filter are 6.3 and 1.1, respectively. Note that
estimation error covariances of the proposed nonlinear H,
FIR filter, the robust nonlinear H,, filter and the extended
Kalman filter are 1.5466e-003, 1.7774e-003 and 4.0684e-003,
and that the estimation error means of the proposed nonlinear

H_ FIR filter, the robust nonlinear H, filter and the ex-
tended Kalman filter are -2.7307e-004, 1.5995e-002 and
1.4377e-002, respectively. These result exemplify that the
estimation performance of the robust H, FIR filter is better
than those obtained by the robust nonlinear H_ filter and by
the Extended Kalman filter.

VI. Conclusions

In this paper the robust nonlinear H,, FIR filter has been
proposed for nonlinear discrete time-varying systems with
parameter uncertainty. Firstly, the discrete-time H_, FIR
filter is obtained for the nonlinear system without the paramet-
ric uncertainty. Secondly, the robust nonlinear H, FIR filter
for the uncertain discrete-time nonlinear systems is derived in
the modified system model. This paper is an extension of pre-
vious works by Kwon et al. [10][11] to nonlinear system,
which treat linear time-varying systems with parameter uncer-
tainty.
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