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1. INTRODUCTION 
 

During the last four decades, the Kalman filter and the 
extended Kalman filter (EKF) have been widely used in the 
estimation problems. They require not only a precise system 
model, but also the statistical property of noise to achieve 
accurate performance. However, model uncertainty and 
incomplete statistical information often occur in real 
applications and make it difficult to precisely estimate the 
system states, potentially leading to very large estimation 
errors. These difficulties can be overcome by studying a 
robust filter [1,2,3]. 

Recently, a robust filter has received considerable attention. 
It has robustness against 1) statistical incompleteness of 
system noise, such as process noise and measurement noise, 2) 
system model uncertainty, and 3) sensitivity caused by 
parameter variation of the system model. They can be 
categorized as H2 filters, H∞ filters, and mixed H2 / H∞ filters 
[4,5,6]. The H∞ filter minimizes the H∞ norm of the transfer 
operator between the noise and the estimation error. Thus, the 
H∞ filter is usually employed when the energy of the system 
noise is bounded and the statistical properties of the noise are 
unknown. This filter minimizes the highest energy gain of the 
estimation error for all initial conditions and noises. In 
particular, a robust H∞ filter, a robust filter with a modified H∞ 
performance, can be established for a system with model 
uncertainty as well as unknown statistical noise properties [3]. 

For a nonlinear system, a second order nonlinear filter and 
an extended Kalman filter have been widely utilized. Because 
the second order nonlinear filter considers higher order terms 
in the computation of its covariance, it is suitable for a highly 
nonlinear system. However, it has large computational 
complexity. Thus, the extended Kalman filter has been widely 
used for real system applications. Since the extended Kalman 
filter uses a linearized model of a nonlinear system with an 

abbreviation of higher order terms, excessive estimation errors 
occur when it is applied to a highly nonlinear system. In 
addition, the extended Kalman filter requires statistical 
information about noise, such as white Gaussian noise, which 
can hardly be obtained in real applications. Therefore, several 
studies have been conducted on the nonlinear robust filter. The 
H∞ nonlinear filter with Hamilton-Jacobi inequality is the 
result of one such study, but its computation procedures for 
obtaining a filter are complicated and it is very difficult to use 
in real applications. To simplify complicated computation 
procedures, an approximation solution to the robust filtering 
problem has recently been developed based on a linearization 
method. The robust filter derived based on this approach is 
called the extended robust filter or extended H∞ filter [3,7]. In 
[8], the nonlinear state estimation with similar characteristics 
is especially proposed for a nonlinear uncertain system with 
uncertainties described by an integral quadratic constraint. 

In this paper, a new robust filter for nonlinear uncertain 
systems with an integral quadratic constraint is presented. The 
derivation is similar to that of [8], but the main contribution of 
this paper is a design of extended robust H∞ filter and a 
derivation of the modified H∞ performance index. The robust 
filter is constructed with local linearization of the system at 
the reference point. This approach extends the extended 
Kalman filter to a robust filter. By introducing a state 
estimation set that is the solution of Hamilton-Jacobi-Bellman 
partial differential equation and by solving locally the filtering 
problem, the robust filter is derived. Then the modified H∞ 
performance index of the filter is derived and analyzed. The 
proposed filter is applied to an estimation problem by 
simulation 

 
2. NONLINEAR ROBUST H∞ FILTER  

 
2.1 Problem formulation 

Consider a nonlinear uncertain system described by 
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where ))(()()( 11 txNttB ∆  and ))(()(2 txNt∆  represent the 

system uncertainties. )(1 tB  and ))(( txN  are known 
matrices. )(1 t∆  and )(2 t∆  are unknown matrices 
satisfying the condition 
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where 1Q  and 1R  are bounded positive definite matrices. 
)(0 tw  is the process noise and )(0 tv  is the measurement 

noise. They belong to the set of 2L  noises and the statistical 
properties are unknown. 

Converting the uncertainties to the fictitious 2L  noises and 
introducing a freedom parameter, the uncertain system (1) and 
(2) can be transformed into an auxiliary system, 
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is a freedom parameter. With the combination of the state 
variables and )(tn , the filter output ))(( txz  is of the form 

[ ]TTT tntxtLtxz ))(())()(())(( γ=         (5) 

where γ  is a given positive real value that indirectly 
indicates the level of noise attenuation in this robust filter 
design.  

For the nonlinear uncertain system, suppose that the 
following constraint is satisfied. 

∫+≤∫+Φ TT dtznLddtvwLx 0 20 1 ),(),())0((      (6) 

where Tt ≤≤0  and d  is an assigned positive real number. 
To construct a robust filter, it is assumed that the system (3), 
(4), and (5) satisfy assumptions 1-6. 

Assumption 1: Every function shown in (3)-(5) belongs to 
1C  and the first derivative is bounded.       

Assumption 2: The matrix ))(( txN  is bounded.  
Assumption 3: The functions Φ , 1L , and 2L  belong to 

1C  and are bounded nonnegative functions. They also satisfy 

121212 )1()()( xxxxxx −++≤− θφφ       (7) 

where 0>θ  and Φ=φ , 1L , or 2L .          
Assumption 4: The function 1L  satisfies a coercivity 
condition, 

2
1 ),( wcvwL ≥  where 0>c . 

Assumption 5: The matrix B  is of full rank.     
Assumption 6: The matrix )(tL  is bounded by  

tIltLtLIl T ∀≤≤ ,)()( 21   

where 1l  and 2l  are positive real numbers. 

 

2.2 Extended robust H∞ filter  
In this section, a robust filter with a modified H2 filter 

structure and a modified H∞ performance index is derived 
based on a local solution of the filtering problem. Similar to 
the development of the well known extended Kalman filter, 
we derive the filter by linearizing the system in the 
neighborhood of the estimated trajectory, x̂ . 

Theorem 1[8]: Assume that the uncertain system (3), (4) with 
(6) satisfies assumption 1~6. Then, the corresponding set of 
possible states is given by 

}),(:{ dsxVRx n
s ≤∈=χ  

where ),( txV  is the unique viscosity solution of (8) in 
]),0[( sRC n × . 
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                  (8) 

where ))0(()0,( xxV Φ= . Assumptions 1-5 ensure that 
),( txV  is finite [9].                 Q.E.D. 

To derive a robust filter, we consider a nonlinear uncertain 
system (3), (4) which satisfies an integral quadratic constraint 
given by 
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where )ˆ(1 xzz = . 

According to the theorem 1 and equation (9), the partial 
differential equation is obtained as 
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where )()()0,( 00 xxMxxxV T −−= . 

The )(ˆ tx , as an estimate value of the state variable )(tx  
is defined to be 



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea      
 

),(minarg)(ˆ txVtx
x

= .            (11) 

Equation (11) satisfies two conditions: 

0)),(ˆ( =∇ ttxVx              (12) 
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The gradient of (10) with respect to x  is given by 
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Using (12) and (13) and evaluating at xx ˆ= , (14) is 
simplified as 
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Furthermore, suppose that the matrix ),ˆ(2 txVx∇  is 
nonsingular for all t , the dynamic equation of state estimate 
satisfying (11) can be written as 
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In addition, the gradient of (14) with respect to x  is 
expressed as 
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Using (12) and (13), evaluating at xx ˆ= , and neglecting 
high order gradient terms, then (17) is reduced to the 
approximated equation (18) 
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where Vx
2∇=∏  and  M=∏ )0( [8]. The corresponding 

differential equation for 1)()( −∏= ttP  from (18) is 
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From these results, a robust filter can be summarized as 
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where 1)0()0( −= MP , 0)0(ˆ xx = , and M  is a matrix which 
reflects the initial errors of the estimate. 

The proposed filter has the structure of an H2 filter but with 
(21) and )()ˆ()ˆ()(2 tPxzxztP x

T
x ∇∇−γ  in (22). However, by 

virtue of (21) and )()ˆ()ˆ()(2 tPxzxztP x
T

x ∇∇−γ , this filter can 
have modified H∞ performance index, as shown in the next 
section. 

 

2.3 Analysis of extended robust H∞ filter 
In this section, the analytical performances of the filter 

proposed in section 2.1 are investigated. We will derive a 
modified H∞ performance index, which is the energy ratio 
between the disturbances and the estimation error, as an 
important characteristic of the filter. 

The estimate errors can be defined to be  

 )(ˆ)()( txtxt −=ζ             (23)  

and the dynamic equation of the estimation errors )(tζ  is 
expressed as   
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1)()()( −= RtCtPtK T . Nonlinear functions ))(ˆ),(( txtxϕ  and 
))(ˆ),(( txtxχ  are defined as   
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And ))(ˆ),(( txtxϕ , ))(ˆ),(( txtxχ  are higher order terms in 
the Taylor expansion. We make assumption 7 and assumption 
8. 

Assumption 7: )()())(()( 11 txtNtxNtn −− == εε .  
Assumption 8: There exist positive real numbers, ,,, ϕχϕ εε k  

and χk , to bound the nonlinear terms ))(ˆ),(( txtxϕ  and 

))(ˆ),(( txtxχ  as follows:      

2
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2
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Lemma 1[1]: Suppose that A1 and A8 are satisfied. For 
estimation errors 1εζ ≤ , there exist real numbers k  such 
that 
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Suppose that a function is chosen as 
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Substituting (22) and (24) in (27), it is easy to show that 
(27) becomes  
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Utilizing the assumption 7 and the triangle inequality 
property, (28) can be expressed as   
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Applying Lemma 1 to (29), we obtain the following 
inequality, 
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Provided that the estimate errors satisfy 2)( εζ ≤t , (30) can 
be modified to 
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where )
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Finally, the performance index of the derived filter is 
obtained as follows. By integrating both sides of (31), the 
modified H∞ performance index J  is expressed as 
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where 
2

1

2l
l

=µ . The performance index J  of the robust 

filter is less than 2
tγ . As µ  is less than 1 , the new value 

tγ  is always greater than γ . tγ  is not only an index of 
disturbance attenuation level, but also an important parameter 
describing filter’s estimation ability in the worst case. 
Decreasing tγ  means that robustness of the filter increases. 
Equation (32) shows that the proposed filter guarantees 
robustness against the noises, including process noise and 
measurement noise and the system model uncertainty. On the 
contrary, when the extended Kalman filter or the H2 filter is 
applied to the nonlinear system, the performance index (32) 
cannot be defined since the value of γ  is ∞. Therefore they 
cannot guarantee robustness against noise and uncertainty and 
cannot have the effect of disturbance attenuation. 

 

3. EXAMPLE 
 

To verify the performance of the proposed filter, an FM 
demodulation problem [10 p. 200,8] is considered. For the FM 
demodulation problem, the extended Kalman filter is 
commonly applied.  

We consider the following nonlinear uncertain system 
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)())(sin(2)( tvttty ++= θ          (34) 

with an integral quadratic constraint 
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The initial conditions of the system (33) are assumed to be 
known as 0)0( =λ  and 0)0( =θ . The disturbances, which 
satisfy the above constraint, also satisfy the following integral 
quadratic constraint. 

∫
∫

−−− +++≤

+

100

0

222222

100

0

22
0

])()()([
2
110

])(100)(50[

dtttt

dttvtw

δθγδλεδλγ .

 

For the extended robust H∞ filer, the filter output is designed 
to be 
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In this system model, we want to estimate the variable 
)(tλ , )(tθ  and )(ty  is the measured FM signal. The 

system is simulated with unknown disturbance signals )(0 tw  
and )(tv  those satisfy (35) and are not white Gaussian 
noises.  

Our extended robust H∞ filer, (20) and (22), processes the 
measured signal )(ty . The result of simulation is illustrated 
in figure 1 for )(tλ  with true trajectory. The result of the 
proposed filter is somewhat noisy, but it is tracking the true 
trajectory. In this simulation, the modified H∞ performance 
index is 1.5. For the purpose of comparison, we simulated the 
extended Kalman filter for the same nonlinear uncertain 
system. This result is illustrated in figure 2. The estimation 
result of the extended Kalman filter has large errors and can be 
considered to be divergent. 
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Figure 1. Simulation results of the extended robust H∞ filer 
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Figure 2. Simulation results of the extended Kalman filer 
 

4. CONCLUSION 
 

The extended robust H∞ filer has been proposed. It has been 
derived by considering a nonlinear uncertain system with an 
integral quadratic constraint and by introducing the notion of a 
local solution to the filtering problem. The proposed filter 
possesses the modified H∞ performance index. Thus, we can 

know the energy gain from disturbances to estimation errors of 
the proposed filter, and contrarily for the prespecified level of 
energy gain, we can design a robust filter, if it exists. The 
simulation results for an FM demodulation have shown that 
the proposed filter is robust to the uncertainty and can yield 
more accurate results than the extended Kalman filter. 
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