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Abstract: In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry 
can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a 
number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these 
nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear 
kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman 
filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended 
Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be 
given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter. 
Keywords: robust extended Kalman filter, Krein space, uncertain nonlinear kinematic model, norm bounded uncertainty, mobile 
robot,  

 
1. INTRODUCTION  

  
Finally, to design the Krein space robust extended Kalman 

filter (KREKF), we have only to apply the Krein space 
Kalman filter algorithm [11-13] to the Krein space model just 
introduced.  

The navigation of a mobile robot to the desired goal 
requires three major functions: a path finding, a control 
algorithm and a pose estimation [1]. Hence, the accurate 
position and orientation (heading) estimation for a mobile 
robot constitutes an essential component of an automatic 
guidance system, the problems related to which have been 
extensively studied by many researchers in this field [1-5]. By 
far, the extended Kalman filter has been the most common 
way of obtaining this estimate since a Kalman filter algorithm 
is undoubtedly optimal in the least mean square sense and, in 
addition, the model of the mobile robot is usually expressed by 
some nonlinear equations. It is well known that the extended 
Kalman filter uses a nonlinear system model along with 
measurements from internal and external sensors to maintain 
an estimate of the robot’s pose and of a corresponding 
covariance matrix describing the uncertainty of the pose 
estimate. So, in order for the estimate to remain optimal, it is 
required that the model of the mobile robot is perfect. But, a 
problem always arises from the fact that there are inevitable 
errors associated with the structure of the mobile robot itself 
and the robot’s motion [2-4], and therefore, the perfect model 
of the mobile robot is rarely available. If this is the case, most 
of the Kalman filters run in a somewhat unstable and/or 
undesirable manner[6-8]. Larsen et al. [2,3] tried to reduce the 
effects of an inaccurate model by increasing the filter’s 
process noise covariance matrix, which is equivalent to adding 
fictitious process noise in the model to simulate the 
uncertainties. 

 
2. MODELS FOR MOBILE ROBOTS 

 
If the mobile robot is equipped with two driving wheels, 

each of which is mounted with an odometric sensor (encoder), 
a very feasible and common way of designing the pose 
estimator is by using these encoder readings as the system 
model [2-4]. An example of such a mobile robot with 
additional passive wheels (four castor wheel) mounted at each 
of robot’s corners is shown on figure 1. 

 

 
 

Fig. 1 A mobile robot with a dual drive and encoder system 
 In this paper, we treat directly the parameter uncertainties 

possibly contained in the nonlinear model of the mobile robot, 
which are described by the energy bounded constraint, i.e., 
sum quadratic constraint (SQC) [9] and, accordingly, propose 
a new method of designing a robust extended Kalman filter 
via an indefinite inner product space [10], i.e., Krein space 
approach: For an approximated model obtained from the 
linearization of an uncertain nonlinear model representing a 
mobile robot, we first construct an appropriate form of 
indefinite quadratic cost function and then, by inspection, 
introduce the corresponding Krein space state space model.  

During one sample period, the encoders will measure 
angular increments corresponding to the distances d  and 

 traveled by the right and the left wheel respectively. 
According to Fig. 1, r  and l  can also be transformed to 
a directional deviation and a radius of the circular movement: 
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where  is the wheelbase, i.e., the distance between the d 
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wheels. Three coordinates ( ),, kkk yx θ  in a global 
coordinate frame constitute the state vector for the mobile 
robot and are observed by some additional absolute 
measurements . The nominal model of the mobile robot 
can then be described by  
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where and v represents the white Gaussian process and 
measurement noises, respectively, and  depends on the 
type of sensor used for the measurement. 

kw

Note that  and , i.e., d ld  and lr ddA +=  
are used as the system inputs.  

 
3. STATE ESTIMATION IN KREIN SPACE 

 
In this section, first, a brief review of a theory for linear 

estimation in Krein space, the Krein space Kalman filter, is 
given as preliminaries. More detailed specifications and proofs 
of the theory are found in [12,13]. And second, to handle 
nominal nonlinear systems using this theory, we derive the 
Krein space extended Kalman filtering algorithm. Notations 
used in this paper are as follows: elements in Krein space are 
denoted by bold faced letters, and elements in Hilbert space 
are denoted by normal letters. 

 
3 .1 Kalman filter in Krein space 

 
Consider the time-variant state-space model over , the 

field of complex numbers  
C

+=
+=+1

iii

iii

xHy
GxF

              (5) 

where , , and  are known 
matrices,  and  are unknown quantities representing 
the process noise and measurement noise, respectively.  is  
the measured output which is assumed known for all  
and the initial condition  is also unknown vector. 
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In many applications one is confronted with the following 
deterministic minimization problem: Given , minimize 

over  and {  the quadratic form 
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subject to the state-space constraints (5), and where 
, , , and  are 

(possibly indefinite) given Hermitian matrices. Note that the 
symbol * denotes the Hermitian transpose operator and we 
have assumed the invertibility of the center matrices.  

mm
i CQ ×∈ pmCS ×

iR ∈ nnC ×∈Π 0

It is known that such deterministic problems can be solved 
via a variety of methods, such as dynamic programming or 
Lagrange multipliers, however, it surely seems to be easier to 
use ‘the partial equivalence’ discussed in [12,13]: compared 
with the (partially) equivalent Krein space (or stochastic) 
minimization problem, a Krein space state-space model can be 

introduced as follows 
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Now if we define  and denote the 
linear subspace spanned by the elements  as 

, instead of finding the stationary point, i.e., the 
minimum point of over , we can 
alternatively find the projection of onto in the 
Krein space model (7). Furthermore, the projection should be 
calculated recursively to effectively manage the successive 
measurement  for all i . The standard method of recursive 
estimation is to introduce the innovations 
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where  denotes the projection of  onto 

. Thanks to the orthogonality of the 
innovations, the calculation of recursive projections can be 
simplified which leads to the following lemma. 
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Lemma 3.1.1 Krein space Kalman filter [12,13] 
Consider the Krein space state-space model (7) with the 

condition (8) when 0=iS . Assume that ],[ ><= jiyR yy
i

 
is strongly regular, i.e., nonsingular for all . Then the 
innovations can be computed via the formula 

iiii H xye ˆ−= ,            (10) Ni ≤≤0
and the measurement and time update formulas are given by 
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and 

iiiii F ||1 ˆˆ xx =+                                     (14) 
**

||1 iiiiiiiii GQGFPFP +=+                          (15) 
, respectively. 

 The only difference from the conventional Kalman filter 
expressions is that the matrices  and  (and, by 

assumption, 
iP ieR ,

0Π ,  and ) may now be indefinite. iQ iR
It is also noted that the Krein space Kalman filter are used 

only to compute the stationary point, i.e., the projection of  
onto . In Hilbert space, projections 
extremize (minimize) certain quadratic forms, however, in 
Krein space, it can be in general only asserted that projections 
stationarize such quadratic forms; further conditions need to 
be met for the stationary points to be extrema (minima). 
Among the several conditions presented in [12,13], the one 
that uses only quantities already present in the Kalman filter 
recursion, viz.  and  is given below. 
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points of the quadratic forms (6), for , will each 
be a unique minimum if, and only if, the matrices 
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Note that the condition for a stationary point to be a 
minimum is the same as in lemma 3.1.2. ieR ,  and  R

 have the same inertia (the number of positive, negative and 
zero eigenvalues) for all . Note that i ,1,0= ⊕  
represents the matrix direct sum operation. 

4. KREIN SPACE ROBUST EXTENDED 
KALMAN FILTER DESIGN 

  
Now, we are ready to present the main results of this paper. 

In this section, the discrete-time uncertain nonlinear systems 
with the sum quadratic constraint (SQC) are of concern. In 
order to reliably estimate the states of such systems, a new 
filtering algorithm, rather than the conventional extended 
Kalman filter, needs to be developed which takes the 
uncertainties contained in systems into account. It will be 
shown that the desired filter can be successfully designed by 
applying the Krein space extended Kalman filter mentioned in 
the previous section to the given uncertain nonlinear system 

3.2 Krein space extended Kalman filter 
 
It is shortly mentioned that the extended Kalman filter 

equations for nominal nonlinear systems can be easily derived 
through the slight modifications and extension of the results in 
the previous subsection. 

Consider the Krein space discrete-time nominal nonlinear 
system 
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4.1 Problem formulation where the nonlinear functions , , and  

are assumed to be sufficiently smooth. The initial state , 

and the process and measurement noises, { and 

, are assumed to satisfy the following Gramian 
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Consider the time-varying uncertain nonlinear 
discrete-time system  









=
+=
+=+

             )(
       ~)(

~)(~)(1

iii

iiii

iiiiii

xks
vxhy

wxgxfx
     Ni ≤≤0   (25) 

~











>=
































<

00 0
0,

i

j

j

i

i

R
Q

x
v
w

x
v
w

      (17) 
where )(⋅if , )(⋅ig , )(⋅ih

iw
, and  are the smooth 

nonlinear functions and 
)(⋅ik

~ , iv~  are the uncertainty inputs 
assumed as white Gaussian noises.  is the measured output 
and  is the uncertainty output. 

iy

is

As in the conventional extended Kalman filter [14], the 
above nonlinear system can be approximated, by Taylor series 
expansion, as 
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as a virtual energy bound and 000 ˆ~ xxx −= . 

and As is usually done in the extended Kalman filter, the 
nonlinear system functions in (25) can be expanded in Taylor 
series about  and  to yield the linearized model as 

follows: 
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, all of which are calculated on line 

Since the extended Kalman filtering problem is defined by 
Kalman filtering problem applied to the linearized system (18), 
it can also be interpreted as finding a filter that minimizes a 
scalar quadratic form  
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subject to (16) or (18). where 
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Given the Krein space discrete-time nominal nonlinear 
system (16) with the condition (17), the extended Kalman 
filter, which stationarizes a scalar quadratic cost function (19) , 
is obtained by 1|ˆ
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(Measurement update) and 
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 Note that this linearized system is also subject to (26). 
(Time update) If we define an indefinite quadratic form by 
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The SQC (26) can be rewritten as 4 .2 Krein space robust extended Kalman filter  
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To apply the Krein space estimation methodology of 
Section 3, from the indefinite quadratic cost function (28) 
identified for the robust extended Kalman filtering problem, 
we can introduce the following Krein space state space model 

where 
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projection method.  
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(38) 
The robust state estimation problem can be stated as 

follows: given the uncertain nonlinear discrete-time system 
(25) subject to (26), find the state estimates that calculate the 
stationary point of the indefinite quadratic form (28). This 
problem will be treated in the next subsection.  

Now, using lemma 3.2.1, the Krein space robust extended 
Kalman filter can be easily derived  
 Before we proceed further, how the uncertain nonlinear 

system subject to the norm-bounded uncertainties is related to 
the system described by (25) and (26). 

Theorem 4.2.1  
Krein space robust extended Kalman filter (KREKF); 
Given the Krein space discrete-time uncertain nonlinear 

system (37) with the condition (38), the robust extended 
Kalman filter, which stationarizes a scalar quadratic cost 
function (28) , can be recursively computed via the following 
formulas 

Consider the time-varying uncertain nonlinear discrete-time 
system 
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It is not difficult to see that, for the robust extended Kalman 
filter case, the inertia condition for a stationary point to be a 
minimum is the same as in lemma 3.1.2 except that , , 

and  have been replaced by
iQ ieR ,

iR iQ
~

, ieR , , and iR , respectively. By inspecting the relation between the system (25) and the 
SQC (26), the following uncertain nonlinear system can be 
constructed from the above SQC (33) 

 
5. COMPUTER SIMULATIONS 
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In this section, to verify the performance of the proposed 

robust filter, we assume that the motion description (3) of the 
mobile robot is contaminated by the norm-bounded 
uncertainty, which may be considered as the uncertainty about 
the effective wheelbase (due to nonpoint wheel contact with 
floor) and, for the comparison purpose, the conventional 
extended Kalman filter is also applied. 

Therefore, it can be asserted that the uncertain nonlinear 
system of the form (25) includes such uncertain nonlinear 
system subject to the norm-bounded uncertainty as (30), 
through the several replacements as follows: 

 Let and, then the uncertain nonlinear 
model of the mobile robot is given by 
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and the process and measurement noises are zero mean white 
Gaussian processes with the covariances of 

Fig. 3 The x position estimation errors of EKF and KREKF 
when  1−=∆

IQi ××= −6101.0 , IRi ××= −3101.0  
, respectively. The sampling time and the total runtime are 
chosen to be 0.01s and 30s, respectively, and all the other 
parameters are defined the same as in Section 2. 

 

When the initial state is given by  
Tommx ]7.3043.514.5[0 =  

, the actual trajectory and the estimates of both filters are 
shown in Fig. 2. 
 

 

Fig. 4 The position estimation errors of EKF and KREKF 
when  

y
1−=∆

 

Fig. 2 The actual trajectory of the mobile robot and the 
estimates of EKF and KREKF 

 
Although, from Fig. 2, the estimates of the EKF and the 

KREKF seem to be not much different, when we plot the 
estimation errors for each of the position x ,  and the 
orientation 

y
θ , the difference between two filters becomes 

salient, which are depicted in Fig. 3, Fig. 4, and Fig. 5, 
respectively.  

 

Fig. 5 Theθ orientation estimation errors of EKF and KREKF 
when  1−=∆

 
Now, for the uncertainty values of , 0 and 1, the 

estimation error variances of all state are summarized, for both 
EKF and KREKF, in Table 1 below 

1−=∆

  
Table 1 Estimation error variances for different values of ∆  

 
 x  y  θ  

1−=∆ EKF 41047.5 −×  41079.5 −×  21015.9 −×
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 KREKF 51096.1 −× 51001.2 −×  51009.2 −×
EKF 71014.7 −× 71030.6 −×  71099.5 −×0=∆  

KREKF 51090.1 −× 51092.1 −×  51088.1 −×
EKF 41072.2 −× 41086.3 −×  21087.8 −×1=∆  

KREKF 51099.1 −× 51096.1 −×  51003.2 −×
 
It is observed that, regardless of whether the uncertainty 

exists or not, the error variances of all states for KREKF are 
hardly changed, while those for EKF are rather fluctuated. 
Specifically, the estimation performance of KREKF, when 
there exists the uncertainty, is apparently better than that of 
EKF, and not much deteriorated even with no uncertainty at 
all.  

 
6. CONCLUSIONS 

 
As an important part of the mobile robot navigation, to 

formulate the position and orientation estimation problem 
more realistically, we have directly treated the parameter 
uncertainties possibly contained in the nonlinear model of the 
robot, which have been described by SQC, and, accordingly, 
also proposed a new method of designing a robust extended 
K lman filter via Krein space approach. To validate the 
usefulness of the proposed robust filter, numerical computer 
simulations have been done. It has been verified that, in spite 
of the existence of the parameter uncertainties, KREKF 
exhibits the steady and acceptable performance, which is not 
the case in the conventional EKF. Consequently, it can be 
asserted that the proposed KREKF is more robust against the 
parameter uncertainties and superior, in the overall 
performance’s view, to the conventional EKF. 

a 
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