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Hybrid Filter Design for a Nonlinear System with Glint Noise
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Abstract - In a target tracking problem, the

radar glint noise has non-Gaussian heavy-tailed
distribution and will seriously affect the target
tracking performance. In most nonlinear
*situations an Extended Robust Kalman
Filter(ERKF) can yield acceptable performance
as long as the noises are white Gaussian.
However, an Extended Robust H. Filter

(ERHF) can yield acceptable performance when
the noises are Laplacian.

In this paper., we use the Interacting Multiple
Model(IMM) estimator for the problem of target
tracking with glint noise. In the IMM method,
two filters(ERKF and ERHF) are used in
parallel to estimate the state. Computer
simulations of a real target tracking shows that
hybrid filter used the IMM algorithm has
superior performance than a single type filter.

1.4 B

The Kalman filter is widely used in the
tracking problem. It can optimally estimate the
target motion from noisy data. The optimality
of the Kalman filter is based on the assumption
of theGaussian noise. If the assumption is
violated,
the Kalman filter is no longer the optimal
filter. There have been a number of researchers
who consider the problem of the Kalman
filtering in non-Gaussian environments.
Unfortunately, few results have been reported
regarding this problem and the standard
Kalman filter is
continuously used in tracking applications.

One of the most effective schemes was proposed
by Masreliez(1,2). He introduced a nonlinear
score function as the correction term in the
state estimate and the results are often nearly
optimal. While this approach seems promising,
it encounters the difficulty of implementing the
convolution operation involved in the evaluation
of

the score function. This precludes the practical
applications of the method. Wu and Kundul(3)
employed an adaptive normal expansion to
expand the score function and truncates the
higher order terms in the expanded series.
Consequently, the score function can be

approximated by a few central moments of the
observation prediction density. However, the
approximate spherical model used to decouple
the state components 1is not a good
approximation. We propose a hybrid filtering
scheme for systems which allows both Gaussian
and non-Gaussian noise called glint

noise at a time. In the structure, ERKF and
ERHF are used in parallel to estimate the
state of a dynamic system with two modes of
operation. We deal with a hybrid system with
two modes using the IMM algorithm. The main
feature of this algorithm 1is its ability to
estimate the

state of a dynamic system with several
behavior modes which can “switch’from one to
another. The ERKF is matched to the dynamic
system with Gaussian measurement noise and
the ERHF is matched to the same dynamic
system but with glint noise modeled as the
mixture of a Gaussian noise with high
occurrence probability and a Laplacian noise
with low occurrence probability.

2.2 £

2.1 Extended Robust Kalman Filter

Now, an extended robust Kalman filter can
be easily derived by using the Krein space
extended Kalman filter{4). Consider the
discrete-time uncertain nonlinear system of the
form

xiy = Flx)+gfx) u;

hix)+ 7; (1)
ki x;)
where the nonlinear functions f{x).g{x,),k{x;) a
nd k{x,) are repeatedly differentiable and uncer
tainty inputs #;, 9, The nonlinear system (1)
satisfies the sum of quadratic constraint

ANl _ 2 ~s Al o~
(xo— %o) ”0, (xo— x9)+ ]20 u; Qz ;i (2)
+2 5 B vset ?_‘bls,l 2
&= e
consider uncertain nonlinear system with contai
ns the norm bounded uncertainty, [4;f.

(ro= 205 o= E)+ [ui@ut (3)

XZDU;R,-_IU,'SE
e
and letting ¢&,=4;(x;) then the following inequa

lity hols.
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Adding (3)and (4), one gets
= 2 M= 20+ B [0 A (s
+ Z‘b U3 (RH2ELEY b,<e+ gbus,u 2

where a;=[u; £]1" and v;=v;+E,%,
Therefore, the sum quadratic constraint(2)
includes the standard norm bounded
uncertainties. To obtain an approximate system
model, the nonlinear functions are expanded by
using the Taylor series about x; and %, ,. By
neglecting higher order terms, the uncertainty
nonlinear system(l) can be linearlized as
X1 = Fa+Giu+p;

vy, = Hx;+ v,+4q; (6)

s; = Kpj+r;
Note that this linearlized system  still
satisfies(2). Inequality(2) can be converted to
the form related to an indefinite quadratic
function, then the extended robust Kalman
filtering problem is concerned with the
following deterministic minimization problem.

™0 Jxo, @9<e (7)

By using the Krein space Kalman filter

equation in Theorem (4] and the corresponding

state-space equation, the Krein space state

equation for the extended robust Kalman

filtering problem can be expressed by
tm=Fjx;+ G; u;+ p;

GBS o

s;)=K;x;+ r;
X9] | %0 I, o 0
with <| wl,| %w|>=| 0 8 0 (9)
vl L T 0 0 [F 9 16x

According to the Krein space-state equations of
the extended robust Kalman filter and the
extended Kalman filter, the extended robust
Kalman equation can be expressed as follows:

P -1
%= 24:‘—1+Pii[§j [ gi _01] (10)
X { y.'_hi(Aﬁ?u-])
_k ( X gi- 1)
1+1 ( xn,) (11)
and P;.; satisfies the Riccati recursion
Pilisi=PRu+H, R Hi—KinKin (12)

:f-\-—l

Pi'=PiL+H R, H,—KIK, (13)

2.2 Extended Robust H. Filter

Consider the following linearized uncertain
nonlinear system

Ty = Fpe;+Gra;+p;

vi = Hpi+ v,+4q;
s = Kntr, (14)
z; = Lr'xi

where uncertainty inputs #%,, ¥, contain the
energy bounded noises and z; is an arbitrary
linear combination of the states should be
estimated. If the filtered estimate is defined as
Zj, then the filtered error is given by

€;= Em'—zf (15)

Now, for a given scalar 7, the extended robust
H.. filtering problem is related to find the
filtered estimate z, that achieves

I T{F) I _=sup

;e;ef R
NG —= 0 ; : <r
- o — - - - -
(xo xo) o (xo Xg )+ = ou; U * i=vov; v
(16)

where T;( F) denotes a transfer matrix. Using

a virtual energy bound e, it is assumed that
the nonlinear systems (14) satisfy the sum
quadratic constraint

o o) ) AR

s

- v~a] [H]
+$1J 0 r - ,x, Ra, O:rj - ]Z, xlse  (17)
g

2| WL R
where - =diag( r ,—I,—yzl). Then, from the above
. 7

inequality, an auxiliary deterministic minimizat
ion problem can be obtained.

T px o e¥)se (18)
As in the robust H. filtering problem, the
above auxiliary deterministic minimization

problem of J(x,, #,% in Hilbert spaces can be
solved by wusing the recursive Krein space
projections with two additional conditions: the
positivity condition of Ji(xy, %,3){(minf,= minJy,_>0)
and the condition for a minimum. The Krein
space state-space equation for the extended
robust He filtering

problem is

xjr1= Fpe;+ G- ;’_+pf

i H; - i
0 |=|K|x+ T +|n] (19)
v L Y
Ziji
s;i=Kx;+7,
with
% X m, 0 0
< w '] u >=10 Q]_é‘j/e 0 (20)
v; v; R; 0 0
0 0 0 —I 0 |84
0 0 ~A1

Then, the extended robust H. filter and its

minimum condition can be easily obtained by
using the previous results.
An extended robust H. filter is given by

Ri= Fuort BTPGK AL Ry (21)
+ Ry TPuHY R T (i h il R aie)
where K=+ 77 Pyl el isy), Ziepi=r« hatx ),
and
P ;- satisfies the Riccati recursion.
Piiai=Piit+ Hin Ry _IH:'H—K‘:MK;H‘_)I} Ll iy

Piyw=FPuFi+ G Q: G, (22)

2.3 Hybrid Filter Design
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2.3.1 Interacting Multiple Model

The Interaction Multiple Model(IMM) estimator
is a suboptimal hybrid filter that has been
shown to be one of the most cost-effective
hybrid state estimation schemes(5].

A general description for a hybrid system with
additive noise is

x(k+1) = Ak, x(R), M(k+ 1))+ gl k, x(B), M(k+ 1), o[ b, M(k+ 1)1}
(23)

with mode-dependent noisy measurements

2(R) =k (b, x(R), M) +ul kb, M(B]]  (24)

and a Makovian transition of the system mode
PM e+ DIM (D)= ¢lk,x(BD,M,M}) (25)

where x(k) is the base state, M(® is the modal
state(system mode index) at time 4, which
denotes the mode in effect during the sampling
period ending at % P{-} is probability,
MB={MHM=3 is the event that mode ;j is in
effect time % o -] and «f-] are the
mode-dependent process and measurement noise
sequences with means v; and w;,
respectively. In the IMM approach, at time &%
the state estimate is computed wunder each
possible current model using r filters, with
each filter using a different combination of the
previous model-conditioned estimates mixed
initial condition. The total probability theorem
is used as follows to yield » filters running in
parallel.

2.3.2 The IMM Algorithm

One cycle of the algorithm consists of the
following:

1. Calculation of the mixing probabilities
G,7=1,...,7.

The probability that mode M, was in effect at
k—1 given that M; is in effect at % conditioned
on Z*!is

#M(k—llk—l)=%pw,(k—l) ii=1,....r (26)

where the normalizing constants are

= Tk j=L..r (27
This is what makes it possible to carry out the
mixing at the beginning of the cycle, rather tha
n the standard merging at the end of the cycle.
2. Mixing (i,j=1,..., 7)
Starting with x'(#—1l4#—1) one computes the mi
xed initial condition for the filter matched to
M,(k) is

A== D= B F k- lk—Dayk=1k=1D  j=1,....7

(28)
The covariance corresponding to the above is
PYCk= k=D = Z, 4y (k= k=D P Ck—1k—1)
+ B =1k=D— 2 (k= 1k-D] (29)
x 2 (k—1k=1D— 2k~ 1e—DT
3. Mode matched filtering (=1,..., Fo)
The likelihood functions corresponding to the r»
filters
AR =pz(BDIM B,z
that is,
AfR= Nlxk; 2'[He—~1 2°G-1-D],  (30)
STEPY(k=1k—-DIl j=1,..., r

4 Mode probability update (=1,..., )
This is done as follows:

pip=L a7 j=1,...r (31
where ¢; is the expression from (27) and
e= B AT (32)

is the normalization constant for (31)

5. Estimate and covariance combination.
Combination of the model-conditioned estimates
and covariances is done according to the mixtur
e equations

A= 3 2 HPuih  (33)

PO = 35 (B (PR 3
+[ T (MR — AR 2 (HB— MR}

2.3 Simulation Results

An incoming ballistic missile model, which cont
ains the standard norm bounded uncertainty
fab<t.

X 4x
X sk
X gk
_ 1 ‘/m
1 =Xt | Ty g Apt wt X3
=t g ot Bt
—'%'gxsﬂuv Pt rut g
—2.9x10 _5x6‘x7,,
0
0
0
+ 8 dxegxntus
0
0.6x10°
1000000
y,,=[0 10000 Ofjxtus
0010000
where
x1 x— position 3.2x10°
P y— pasition 3.2x10°
% 2z~ position 2.1x10°
x| = x—velocity |, %= |—1.5%10*
x5 y— velocity —1.5x10*
P z— velocity —-8.1x10°
x atmosphic density, 5x107%*

and it is assumed that uncorrelated exogenous
noises are u, v, satisfy

con{oug up) = Q= diag(0,0,0, 100,100, 100, 2.0times10 ),
co vy, v =R/.=—-Lk+1 diag(150,150, 150)

The initial error covariance matrix is given by
IIy= 10°x diag(1.5,1.5,1.5,0.015,0.015, 0.00015,
10 “Sexp(—7.38%10 "%)

L=[0001110] , =23
The glint can be modeled as the mixture of a G
aussian noise with moderate variance and a La
placian noise with large variance.

Fly=(—effv)tef(v)
where f{-),f,-).f£-), and e represent the the
glint, the Gaussian, the Laplacian distribution,
and glint probability respectively. The ¢ is giv
en by 04.
The two initial mode probabilities were both set
to 0.5, and the Markov chain transition matrix
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for the two-mode system used is
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In this thesis, the hybrid filter using the IMM

algorithm for nonlinear systems which allows bo
th Gaussian and glint non-Gaussian noise at a

time. We used the hybrid filter for the proble

m of target tracking with glint noise mixed Gau
ssian and Laplacian. It has been shown that th
e hybrid filter has superior performance compar
ed with a single type filter. We used the hybrid
filter and obtained satisfactory results.
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