• 제목/요약/키워드: ring-module

검색결과 366건 처리시간 0.025초

(CO)RETRACTABILITY AND (CO)SEMI-POTENCY

  • Hakmi, Hamza
    • Korean Journal of Mathematics
    • /
    • 제25권4호
    • /
    • pp.587-606
    • /
    • 2017
  • This paper is a continuation of study semi-potentness endomorphism rings of module. We give some other characterizations of endomorphism ring to be semi-potent. New results are obtained including necessary and sufficient conditions for the endomorphism ring of semi(injective) projective module to be semi-potent. Finally, we characterize a module M whose endomorphism ring it is semi-potent via direct(injective) projective modules. Several properties of the endomorphism ring of a semi(injective) projective module are obtained. Besides to that, many necessary and sufficient conditions are obtained for semi-projective, semi-injective modules to be semi-potent and co-semi-potent modules.

SOME RESULTS ON PP AND PF-MODULES

  • KHAKSARI, AHMAD
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.377-386
    • /
    • 2006
  • For a commutative ring with unity R, it is proved that R is a PF-ring if and only if the annihilator, $ann_R(a)$, for each $a{\in}R$ is a pure ideal in R. Also it is proved that the polynomial ring, R[x], is a PF-ring if and only if R is a PF-ring. Finally, we prove that M as an R-module is PF-module if and only if M[x] is a PF R[x]-module. Also M is a PP R-module if and only if M[x] is a PP R[x]-module.

  • PDF

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

Finitely Generated Modules over Semilocal Rings and Characterizations of (Semi-)Perfect Rings

  • Chang, Chae-Hoon
    • Kyungpook Mathematical Journal
    • /
    • 제48권1호
    • /
    • pp.143-154
    • /
    • 2008
  • Lomp [9] has studied finitely generated projective modules over semilocal rings. He obtained the following: finitely generated projective modules over semilocal rings are semilocal. We shall give necessary and sufficient conditions for finitely generated modules to be semilocal modules. By using a lifting property, we also give characterizations of right perfect (semiperfect) rings. Our main results can be summarized as follows: (1) Let M be a finitely generated module. Then M has finite hollow dimension if and only if M is weakly supplemented if and only if M is semilocal. (2) A ring R is right perfect if and only if every flat right R-module is lifting and every right R-module has a flat cover if and only if every quasi-projective right R-module is lifting. (3) A ring R is semiperfect if and only if every finitely generated flat right R-module is lifting if and only if RR satisfies the lifting property for simple factor modules.

A Note on c-Separative Modules

  • Chen, Huanyin
    • Kyungpook Mathematical Journal
    • /
    • 제47권3호
    • /
    • pp.357-361
    • /
    • 2007
  • A right R-module P is $c$-separative provided that $$P{\oplus}P{{c}\atop{\simeq_-}}P{\oplus}Q{\Longrightarrow}P{\simeq_-}Q$$ for any right R-module Q. We get, in this paper, two sufficient conditions under which a right module is $c$-separative. A ring R is a hereditary ring provided that every ideal of R is projective. As an application, we prove that every projective right R-module over a hereditary ring is $c$-separative.

  • PDF

OPENLY SEMIPRIMITIVE PROJECTIVE MODULE

  • Bae, Soon-Sook
    • 대한수학회논문집
    • /
    • 제19권4호
    • /
    • pp.619-637
    • /
    • 2004
  • In this paper, a left module over an associative ring with identity is defined to be openly semiprimitive (strongly semiprimitive, respectively) by the zero intersection of all maximal open fully invariant submodules (all maximal open submodules which are fully invariant, respectively) of it. For any projective module, the openly semiprimitivity of the projective module is an equivalent condition of the semiprimitivity of endomorphism ring of the projective module and the strongly semiprimitivity of the projective module is an equivalent condition of the endomorphism ring of the projective module being a sub direct product of a set of subdivisions of division rings.

SEMISIMPLE DIMENSION OF MODULES

  • Amirsardari, Bahram;Bagheri, Saeid
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.711-719
    • /
    • 2018
  • In this paper we define and study a new kind of dimension called, semisimple dimension, that measures how far a module is from being semisimple. Like other kinds of dimensions, this is an ordinal valued invariant. We give some interesting and useful properties of rings or modules which have semisimple dimension. It is shown that a noetherian module with semisimple dimension is an artinian module. A domain with semisimple dimension is a division ring. Also, for a semiprime right non-singular ring R, if its maximal right quotient ring has semisimple dimension as a right R-module, then R is a semisimple artinian ring. We also characterize rings whose modules have semisimple dimension. In fact, it is shown that all right R-modules have semisimple dimension if and only if the free right R-module ${\oplus}^{\infty}_{i=1}$ R has semisimple dimension, if and only if R is a semisimple artinian ring.

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.

Some Analogues of a Result of Vasconcelos

  • DOBBS, DAVID EARL;SHAPIRO, JAY ALLEN
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.817-826
    • /
    • 2015
  • Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.