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Abstract. Lomp [9] has studied finitely generated projective modules over semilocal
rings. He obtained the following: finitely generated projective modules over semilocal
rings are semilocal. We shall give necessary and sufficient conditions for finitely generated
modules to be semilocal modules. By using a lifting property, we also give characterizations
of right perfect (semiperfect) rings. Our main results can be summarized as follows:

(1) Let M be a finitely generated module. Then M has finite hollow dimension if and
only if M is weakly supplemented if and only if M is semilocal.

(2) A ring R is right perfect if and only if every flat right R-module is lifting and
every right R-module has a flat cover if and only if every quasi-projective right R-module
is lifting.

(3) A ring R is semiperfect if and only if every finitely generated flat right R-module

is lifting if and only if RR satisfies the lifting property for simple factor modules.

1. Introduction

In this note, all rings R considered are associative rings with identity and all
modules are unital right R-modules unless indicated otherwise. For a module M ,
Rad(M), Soc(M), E(M), EndR(M) are the (Jacobson) radical, socle, injective hull
and endomorphism ring of M , respectively. Let M be a module and let K be a
submodule of M . K is called small submodule (or superfluous submodule) of M ,
abbreviated K � M , if, for every submodule L ≤ M , K + L = M implies L = M .
Let N1 ≤ N2 ≤ M . N1 is a co-essential submodule of N2 in M , abbreviated
N1 ≤c N2 in M , if N2/N1 � M/N1. A submodule N of M is said to be co-closed
in M (or a co-closed submodule of M), if N has no proper co-essential submodule
in M . i.e., N ′ ≤c N in M implies N = N ′. Let N1 ≤ N2 ≤ M . N1 is said to be a
co-closure of N2 in M if N1 is a co-closed submodule of M with N1 ≤c N2 in M .
Any submodule of a module has a closure. However, a co-closure does not exist in
general, for example, 2Z does not have a co-closure in ZZ.

Let M be a module and let N and L be submodules of M . N is called a
supplement of L if M = N + L and N ∩ L � N . Note that any supplement
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submodule (hence any direct summand) of a module M is co-closed in M . Following
[12], a module M is supplemented if every submodule of M has a supplement. N
is called a weak supplement of L if M = N + L and N ∩ L � M . A module M is
weakly supplemented if every submodule of M has a weak supplement. Let M and
N be modules. An epimorphism g : M → N is called a small cover of N if Ker
g � M . M is called a flat cover (resp. projective cover) of N if M is a small cover
of N and M is a flat (resp. projective) module. Flat covers and projective covers
do not exist in general. For example, Z-module Z/2Z does not have a flat cover.
We know that if a module has a projective cover, it is unique up to isomorphism.
However, this is not the case for the flat covers (cf., [1, Example 2.1]). A ring R
is called semiperfect (resp. right perfect) if every finitely generated right R-module
(resp. right R-module) has a projective cover. A ring R is said to be semilocal if
R/J(R) is left (or right) semisimple ring.

2. Preliminaries

Theorem 2.1 ([3, Theorem 1.1.24]). For a module M , the following hold:
(a) If M is a quasi-injective module, then M is a fully invariant submodule of E(M).
(b) If M is a quasi-injective module, then any direct decomposition E(M) = E1 ⊕
· · · ⊕ En induces M = (M ∩ E1)⊕ · · · ⊕ (M ∩ En).
(c) If M is a quasi-projective module with a projective cover ϕ : P → M , Ker ϕ
is a fully invariant submodule of P ; whence any endomorphism of P induces an
endomorphism of M .
(d) If M is a quasi-projective module with a projective cover ϕ : P → M , then any
direct decomposition P = P1 ⊕ · · · ⊕ Pn induces M = ϕ(P1)⊕ · · · ⊕ ϕ(Pn).

Lemma 2.2. Let R be a ring such that every maximal right ideal of R is a direct
summand of RR. Then R is semisimple.

Proof. Assume that Soc(RR) ≤ RR. By [2, Theorem 2.8], there is a maximal
submodule IR such that Soc(RR) ⊆ IR. By hypothesis, there exists a decomposition
RR = I⊕X. Then, since X is a simple submodule of RR, we see X ⊆ Soc(RR) ⊆ I,
which is a contradiction. Hence R = Soc(RR). �

Lemma 2.3 (cf., [4] and [8]). A ring R is right perfect (semiperfect) if and only if
every (finitely generated) projective right R-module is lifting.

Let M = M1 ⊕ M2 and let ϕ : M1 → M2 be an R-homomorphism. Put
〈M1

ϕ→ M2〉 = {m1 − ϕ(m1) | m1 ∈ M1}. Then this is a submodule of M which is
called the graph with respect to ϕ. Note that M = M1 ⊕M2 = 〈M1

ϕ→ M2〉 ⊕M2

(cf., [7]).

Proposition 2.4. Let R be a right perfect ring. Suppose that P is a projective
module and P1, · · · , Pn are indecomposable direct summands of P such that P =
P1 + · · ·+ Pn and P1 ⊕ · · · ⊕ Pn. Then P = P1 ⊕ · · · ⊕ Pn.

Proof. By Lemma 2.3, P is lifting. First we show P1 ⊕ P2 ≤⊕ P . Since P1 ≤⊕ P ,
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there exists a decomposition P = P1⊕P ∗
1 . Let πP1 : P → P1 and πP∗

1
: P → P ∗

1 be
projections, respectively. We consider πP∗

1
|P2 : P2 → P ∗

1 . Then πP∗
1
(P2) is not small

in P ∗
1 . As P ∗

1 is lifting, there is a decomposition P ∗
1 = P ∗

1 ⊕P ∗
1 such that πP∗

1
(P2) ≤c

P ∗
1 in P ∗

1 . Then πP∗
1
(P2) = P ∗

1 ⊕ (πP∗
1
(P2)∩P ∗

1 ). Since (πP∗
1
(P2)∩P ∗

1 ) � P ∗
1 ≤ P ,

(πP∗
1
(P2) ∩ P ∗

1 ) � P . Hence (πP∗
1
(P2) ∩ P ∗

1 ) ⊆ Rad(P). On the other hand,

P = P1 + P2 = P1 ⊕ P ∗
1 = P1 ⊕ P ∗

1 ⊕ P ∗
1 .

Let πP∗
1

: P → P ∗
1 and π

P∗
1

: P → P ∗
1 be projections, respectively. Then πP∗

1
(P2) =

πP∗
1
(P2)⊕ π

P∗
1
(P2) and πP∗

1
(P2) = P ∗

1 . Since P ∗
1 is projective, the sequence P2

π
P∗
1→

πP∗
1
(P2) → 0 splits. Thus Ker (πP∗

1
) ≤⊕ P2. Since P2 is indecomposable, Ker

(πP∗
1
) = 0. Hence P2

π
P∗
1' πP∗

1
(P2). Now, we define a map ϕ : πP∗

1
(P2) → P1⊕P ∗

1 by

πP∗
1
(p2) → πP1(p2) + π

P∗
1
(p2). Then ϕ is well-defined. Since P2 ⊆ 〈P ∗

1

ϕ→ P1⊕P ∗
1 〉,

〈P ∗
1

ϕ→ P1 ⊕ P ∗
1 〉 = P2 ⊕ X for some X. Hence we get P1 + P2 = P1 ⊕ P2 ≤⊕ P .

We put P1 ⊕ P2 = Q. Using the case n− 1, we obtain

P = P1 + · · ·+ Pn = Q⊕ P3 ⊕ · · · ⊕ Pn.

Thus, the induction works. �

Lemma 2.5 (cf., [10]). Let P be a projective module. Then the following statements
are equivalent:
(i) Every factor module of P has a projective cover;
(ii) P is lifting.

Proposition 2.6. Let R be a ring such that A is a right ideal of R. If R/(A+J(R))
has a projective cover, then so does R/A.

Proof. Consider the canonical epimorphisms R
πA→ R/A

π(A+J(R))→ R/(A + J(R)).
Then, by [2, Lemma 17.17], we can take an idempotent e ∈ R for which
π(A+J(R))πA|eR : eR → R/(A + J(R)) is a projective cover. Hence Ker
(π(A+J(R))πA|eR) � eR. Since R = eR + A + J(R), we obtain R = eR + A.
Thus πA|eR : eR → R/A is an epimorphism. Since Ker (πA|eR) ⊆ Ker
(π(A+J(R))πA|eR) � eR, πA|eR : eR → R/A is a projective cover. �

Proposition 2.7 (cf., [3]). Let R be a ring such that R/J(R) is semisimple and
idempotents lift modulo J(R). Then RR satisfies the lifting property for simple fac-
tor modules.

Proposition 2.8. Let R be a ring such that RR satisfies the lifting property for
simple factor modules. Then RR is a lifting module. In other words, if every sim-
ple right R-module has a projective cover, then every cyclic right R-module has a
projective cover.
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Proof. Let AR ≤ RR. We show that R/A has a projective cover. By Proposition
2.5, we may assume that J(R) ⊆ A. By [2, Theorem 2.8] and Lemma 2.2, R/J(R)
is semisimple. By [2, Theorem 9.6], (R/J(R))/(A/J(R)) ' R/A, we see that R/A
can be expressed as a direct sum of simple submodules. Since any simple right
R-module has a projective cover, R/A has a projective cover. �

We recall that a module M is called semilocal if M/Rad(M) is semisimple.

Lemma 2.9 (cf., [9] and [12, 21.6(4)]). Let R be a semilocal ring and let P be a
finitely generated projective module. Then the following hold:
(a) Rad(P ) � P .
(b) P is semilocal.
(c) EndR(P ) is semilocal.
(d) P is weakly supplemented.

Corollary 2.10. Let R be a ring. Then the following conditions are equivalent:
(i) R is semilocal;
(ii) Every finitely generated projective right R-module is semilocal.

Proof. (ii)=⇒(i) is obvious.
(i)=⇒(ii) Let P be a finitely generated projective right R-module. Then there

exists ⊕F Ri
f→ P → 0, where Ri = R and F is a finite set. As RR is weakly sup-

plemented, ⊕F Ri is weakly supplemented. Since a weakly supplemented module is
closed under a homomorphic image, P is weakly supplemented. Hence P is finitely
generated projective weakly supplemented. Then Rad(P ) � P . By Lemma 2.9(b),
P is semilocal. �

Lemma 2.11. Let N be a module and let M be a lifting module. Suppose Ker
g � M

g→ N → 0 with K � N . Then g−1(K) � M .

Proof. Since M is lifting, there exists a decomposition M = M∗ ⊕M∗∗ such that
M∗ ≤c g−1(K) in M . Moreover, N = g(M∗) + g(M∗∗) = K + g(M∗∗) = g(M∗∗).
Then M = Ker g + M∗∗. Since Ker g � M , M = M∗∗. Thus M∗ = 0. Hence
g−1(K) � M . �

3. Finitely generated modules over semilocal rings

Recall that a module H is hollow if every proper submodule is small in H. A
module M is said to have finite hollow dimension (or finite dual Goldie dimension)

if there exists an exact sequence M
f→ ⊕n

i=1Hi → 0, where all the Hi are hollow
and Ker f � M . Then n is called the hollow dimension of M .

Proposition 3.1 (cf., [9, Theorem 2.7]). Let M be a finitely generated module.
Then the following statements are equivalent:
(i) M has finite hollow dimension;
(ii) M is weakly supplemented;
(iii) M is semilocal.
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Proof. (i)=⇒(ii) By assumption, there exists M
f→ ⊕n

i=1Hi → 0, where all the
Hi are hollow and Ker f � M . Then ⊕n

i=1Hi is weakly supplemented. Since a
small cover of a weakly supplemented module is weakly supplemented, M is weakly
supplemented.
(ii)=⇒(iii) Suppose that M is weakly supplemented. Since M is weakly supple-
mented, for any L ≤ M such that Rad(M) ⊆ L, there exists a weak supplement
L of M such that M = K + L and K ∩ L � M . Hence K ∩ L ⊆ Rad(M). Then
L/Rad(M) ⊕ (K + Rad(M))/Rad(M) = M/Rad(M). Thus every submodule of
M/Rad(M) is a direct summand.

(iii)=⇒(i) Consider the canonical epimorphism M
f→ M/Rad(M). Since M/Rad(M)

is semisimple, there exists a decomposition M/Rad(M) = M1/Rad(M) ⊕ · · · ⊕
Mn/Rad(M), where Mi/Rad(M) is simple, i = 1, · · · , n. Since M is finitely gener-

ated, Rad(M) � M . Hence M
f→ M/Rad(M) is a small cover.

(iii)=⇒(ii) Assume that M is semilocal. Since M/Rad(M) is semisimple, for any
L ≤ M , there exists a decomposition M/Rad(M) = (L + Rad(M))/Rad(M) ⊕
T/Rad(M). Then M = L + Rad(M) + T = L + T . Moreover, L ∩ T � M . Thus
M is weakly supplemented. �

By Corollary 2.10 and Proposition 3.1, we get the following:

Corollary 3.2 (cf., [5, 18.10] or [9, Theorem 3.5]). Let R be a semilocal ring and
let M be a finitely generated module. Then the following statements are equivalent:
(i) M has finite hollow dimension;
(ii) M is weakly supplemented;
(iii) M is semilocal.

Lemma 3.3. Let R be a semilocal ring and let M be a finitely generated module.
Then every supplement in M is weakly supplemented. Moreover, every co-closed
submodule of M is weakly supplemented.

Proof. Let N be a supplement submodule of M . Then there exists a submodule
K of M such that M = K + N and K ∩ N � N . Since M/K ' N/(K ∩ N) is

weakly supplemented, N
f→ N/(K ∩ N) is a small cover. Hence N is weakly sup-

plemented. Finally, let K be a co-closed in M . Since Rad(K) = K ∩ Rad(M),
K/Rad(K) ' (K + Rad(M))/Rad(M) ≤ M/Rad(M). Since M/Rad(M) is
semisimple, K/Rad(K) is semisimple. �

Let L and M be modules. Following [5], L is small M -projective if the canon-
ical epimorphism g : M → M/K such that K � M and any homomorphism
f : L → M/K, there exists a homomorphism h : L → M such that gh = f . L is Rad
M -projective if the canonical epimorphism g : M → M/K such that K ⊆ Rad(M)
and any homomorphism f : L → M/K, there exists a homomorphism h : L → M
such that gh = f . M is small self-projective if it is small M -projective and is Rad
self-projective if it is Rad M -projective. It is easy to see that Rad M -projective
modules are small M -projective.
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Theorem 3.4. Let R be a semilocal ring and let M be a finitely generated module.
Then the following conditions are equivalent:
(i) M is Rad-M -projective (i.e., M is Rad-self-projective);
(ii) M is M -projective (i.e.,M is self-projective);
(iii) M is small M -projective (i.e., M is small self-projective).

Proof. (ii)=⇒(iii) is obvious.
(iii)=⇒(ii) Suppose that M is small M -projective. Let K be a submodule of M
and let f : M → M/K be any homomorphism and π : M → M/K be the
canonical epimorphism. For (K + Rad(M))/Rad(M) ≤ M/Rad(M), there ex-
ists a direct summand T/Rad(M) of M/Rad(M) such that M/Rad(M) = (K +
Rad(M))/Rad(M)⊕T/Rad(M), as M/Rad(M) is semisimple, Since Rad(M) � M ,
M = K +Rad(M)+T = K +T . Moreover, (K +Rad(M))/Rad(M)∩T/Rad(M) =
[(K + Rad(M)) ∩ T ]/Rad(M) = [(K ∩ T ) + Rad(M)]/Rad(M) = 0. Hence
(K ∩ T ) ⊆ Rad(M) � M . Therefore K ∩ T � M . Let π1 : K → K/(K ∩ T )
be the canonical epimorphism. Define a map g : M → M/K ⊕ K/(K ∩ T ) by
t + k  (π(t), π1(k)), for t ∈ T , k ∈ K. Then g is well-defined and a small cover.
By hypothesis, there exists a homomorphism h : T → M = K + T such that
gh = if , where i : M/K → M/K ⊕K/(K ∩ T ) is an inclusion map. Then πh = f .
Thus M is M -projective.
(i)=⇒(iii) is trivial.
(iii)=⇒(i) Since M is finitely generated, Rad(M) � M . By assumption, M is
Rad-M -projective. �

By Theorem 3.4 and [9, Corollary 3.12], we get the following:

Corollary 3.5. Let R be a semilocal ring and let M be a finitely generated module
satisfying one of the following:
(a) M is Rad-self-projective,
(b) M is small self-projective.
Then EndR(M) is semilocal.

Let L and M be modules. Following [5], L is im-summand (im-co-closed) M -
projective if the canonical epimorphism g : M → M/K such that and any homomor-
phism f : L → M/K such that Im f is a direct summand (co-closed) in M/K, there
exists a homomorphism h : L → M such that gh = f . Note that im-co-closed M -
projective modules are im-summand M -projective. L is M -epi-projective if for any
epimorphisms p : M → N and f : L → N , there exists a homomorphism h : L → M
such that ph = f . L is epi-projective if it is L-epi-projective. L is im-summand (im-
co-closed) small M -projective if the canonical epimorphism g : M → M/K and any
homomorphism f : L → M/K such that Im f is a direct summand (co-closed) in
M/K and K � M , there exists a homomorphism h : L → M such that gh = f . It
is easy to see that im-co-closed small M -projective modules are im-summand small
M -projective.

Remark 3.6. It is obvious that the following implications hold for a module:
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(a) M -projective =⇒ small M -projective.
(b) M -projective =⇒ im-summand M -projective =⇒ im-summand small M -
projective.
(c) M -projective =⇒ im-co-closed M -projective =⇒ im-co-closed small M -projective.
(d) projective =⇒ self-projective (or quasi-projective) =⇒ epi-projective.

Lemma 3.7. Let M be a weakly supplemented module. Then the following condi-
tions are equivalent:
(i) M is M -epi-projective (i.e., M is epi-projective);
(ii) M is M -projective (i.e., M is self-projective);
(iii) M is small M -projective (i.e., M is small self-projective).

Proof. (ii)=⇒(i) is obvious.
(i)=⇒(ii) Consider a diagram M

f

��
M

g // M/K // 0,

where any homomorphism f : M → M/K and the canonical epimorphism
g : M → M/K. Then Im f ≤ M/K. If Im f = M/K, then, by assumption, there
exists a homomorphism h : M → M such that the above diagram commutes. If Im
f � M/K. Put Im f = L/K. Since M/K is weakly supplemented, there exists a
submodule T/K of M/K such that L/K +T/K = M/K and L/K∩T/K � M/K.
Then M = L + T and g(L) = Im f . By hypothesis, there exists a homomorphism
h : M → M such that the above diagram commutes. (ii)⇐⇒(iii) This follows from
[6, Lemma 2.1]. �

By Lemma 3.7, “An epi-projective weakly supplemented module is self-
projective” (cf., [6, Corollary 3.2]).

Lemma 3.8 (cf., [6, Corollary 2.2]). Let L be a module and let H be a hollow
module. Then the following conditions are equivalent:
(i) L is im-summand H-projective;
(ii) L is im-summand small H-projective.

Proof. (i)=⇒(ii) is obvious.
(ii)=⇒(i) Consider a diagram L

f

��
H

g // H/K // 0,

where any homomorphism f : L → H/K with Im f ≤⊕ H/K and the canonical
epimorphism g : H → H/K. Since H is hollow, K � H. By assumption, there
exists a homomorphism h : L → H such that the above diagram commutes. �

Using a proof similar to that of Lemma 3.8, we get the following two results.

Corollary 3.9 (cf., [6, Corollary 2.2]). Let L be a module and let H be a hollow
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module. Then the following conditions are equivalent:
(i) L is im-co-closed H-projective;
(ii) L is im-co-closed small H-projective.

Corollary 3.10. Let L be a module and let H be a hollow module. Then the
following conditions are equivalent:
(i) L is im-summand H-projective;
(ii) L is H-epi-projective.

Recall that a module M is amply supplemented if, for any submodules A, B
of M with M = A + B there exists a supplement P of A such that P ⊆ B. It is
well-known from [12] that the following implications hold for a module:

“lifting =⇒ amply supplemented =⇒ supplemented =⇒ weakly supplemented
=⇒ semilocal”

Lemma 3.11. Let L be a module and let M be an amply supplemented module.
Suppose that every co-closed submodule of a factor module of M is a direct sum-
mand. Then the following conditions are equivalent:
(i) L is im-summand (small) M -projective;
(ii) L is im-co-closed (small) M -projective.

Proof. (ii)=⇒(i) Since every direct summand of a module is a co-closed submodule,
L is im-summand M -projective.
(i)=⇒(ii) Consider a diagram L

f

��
M

g // M/K // 0,

where any homomorphism f : L → M/K with Im f is co-closed in M/K and the
canonical epimorphism g : M → M/K. Since M/K is amply supplemented, there
exists a co-closure T of Im f in M/K which is a direct summand of M/K. i.e.,
T ≤c Im f in M/K such that T is co-closed in M/K. Since Im f is co-closed
in M/K, T = Im f ≤⊕ M/K. By assumption, there exists a homomorphism
h : L → M such that the above diagram commutes. �

By Lemma 3.8, 3.11, and Corollary 3.9, 3.10, the following holds:

Corollary 3.12. Let L be a module and let H be a hollow module. Then the
following conditions are equivalent:
(i) L is im-summand (small) H-projective;
(ii) L is im-co-closed (small) H-projective;
(iii) L is H-epi-projective.

We recall that a module M is strongly discrete if it is self-projective and sup-
plemented. It is well-known from [6] that the following implications hold for a
module:

“strongly discrete =⇒ discrete =⇒ quasi-discrete =⇒ lifting”.

The converse implications are not true in general.
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Example 3.13. (1) Consider the quotient field K of a discrete valuation domain R
which is not complete. Then K as an R-module is discrete but is not self-projective
(cf., [6, pp. 902-903]).
(2) Let R be a discrete valuation ring with a prime ideal P . Then an injective hull
E(R/P ) of R/P is quasi-discrete but not discrete.
(3) Put R = Z/4Z and QR = R⊕R. Then a submodule MR = (1, 2)R⊕ (1, 0)R of
QR is lifting but not quasi-discrete.

Theorem 3.14 (cf., [6, Theorem 3.4]). Let H be a hollow module. Then the
following conditions are equivalent:
(i) H is strongly discrete;
(ii) For every K ≤ H (K � H) and for any homomorphism f : H → H/K with
Im f = L/K, where L is co-closed in H, f can be lifted to H;
(iii) H is im-summand (small) H-projective;
(iv) H is im-co-closed (small) H-projective;
(v) H is epi-projective.

Proof. From the proof of [6, Lemma 2.1] we see that the ≤- and �-versions of
condition (ii) are equivalent.
(i)=⇒(ii) Since H is lifting, there exist co-closures of submodules of H. Hence (ii)
follows.
(ii)=⇒(iii) Since H is amply supplemented, the proof is similar to (b)=⇒(c) of [6,
Theorem 2.4].
(iii)⇐⇒(iv) This follows from Corollary 3.12.
(iv)=⇒(v) By Corollary 3.12, H is epi-projective.
(v)=⇒(i) Since H is lifting and epi-projective, H is strongly discrete by [6, Theorem
3.3]. �

By [6, Lemma 2.3, Theorem 2.4] and Corollary 3.12, we obtain the following:

Theorem 3.15. Let H be a projective hollow module satisfying one of the following:
(a) H is im-summand (small) H-projective,
(b) H is im-co-closed (small) H-projective,
(c) H is epi-projective.
Then H is discrete.

4. Characterizations of (semi-)perfect rings

Following [1], a ring R is right generalized perfect (or right G-perfect) if every
right R-module has a flat cover. It is easy to see that right perfect rings are right
generalized perfect.

We give characterizations for right perfect rings.

Theorem 4.1. The following statements are equivalent for a ring R:
(i) R is right perfect;
(ii) Every flat right R-module is lifting and R is right generalized perfect;
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(iii) R is semilocal and every non-zero right R-module has a maximal submodule;
(iv) Every quasi-projective right R-module is lifting;
(v) Every countably generated free right R-module is lifting.

Proof. (i)=⇒(ii) Let L be a flat right R-module. By Lemma 2.3 and [2, Theorem
28.4], L is lifting. Since every projective module is flat, every right R-module has a
flat cover.
(ii)=⇒(i) Consider a diagram P

f

��
L

g // M //

��

0,

0
where any epimorphism f : P → M with P is projective and g : L → M is a flat
cover. Since P is projective, there exists a homomorphism h : P → L such that the
above diagram commutes. Since Ker g � L, h is an epimorphism. Then h−1(Ker
g) = Ker gh. By assumption, L is lifting. By Lemma 2.11, h−1(Ker g) = Ker

gh = Ker f � P . Hence P
f→ M is a projective cover.

(ii)=⇒(iii) By assumption, RR is lifting. Let A be a submodule of RR with J(R) ⊆
A. We put A = A/J(R) and R = R/J(R). We may show A ≤⊕ R. Since
RR is lifting, there exists a decomposition RR = A∗ ⊕ A∗∗ such that A∗ ≤ A
and A ∩ A∗∗ � R. Consider the canonical map ϕ = ϕ |J(R): R → R. Then
R = ϕ(A)⊕ϕ(A∗∗). In fact, ϕ(A) = A. Hence A ≤⊕ R. Therefore R is semisimple.
Let M be a right R-module. By assumption, we can consider a diagram

P

f

��
L

g // M //

��

0,

0

where any epimorphism f : P → M with P is projective and g : L → M is a flat
cover. Since P is projective, there exists a homomorphism h : P → L such that the
above diagram commutes. Since Ker g � L, h is an epimorphism. By hypothesis, P
is projective lifting. Then there exists a maximal submodule K of P such that Ker
f ⊆ K. It is sufficient to show that P/Ker f has a maximal submodule. By Lemma
2.5, P/Ker f has a projective cover. Say Q

q→ P/Ker f. Thus Q/Ker q' P/Ker f.
Since Q is projective, Q has a maximal submodule L. Hence Ker q ⊆ Rad(Q) ⊆ L.
This implies that L/Ker q is a maximal submodule of Q/Ker q. Hence P/Ker f has
a maximal submodule. Therefore M has a maximal submodule.
(iii)=⇒(i) holds by [2, Theorem 28.4].
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(i)=⇒(v) This follows from Lemma 2.3.
(v)=⇒(i) By hypothesis, R is semiperfect and R is semisimple. Since R(N) is lift-
ing, there exists a decomposition R(N) = X ⊕ Y such that X ≤ Rad(R(N)) and
Rad(R(N) ∩Y � Y . Since Rad(R(N)) = Rad(X)⊕Rad(Y ) and X ≤ Rad(R(N)), we
see Rad(X) = X. Hence, by [2, Lemma 28.3], J(R) is right T -nilpotent. Thus R is
right perfect.
(iv)=⇒(iii) By assumption, RR is lifting. Then R is semisimple. Let M be a non-
zero right R-module. Then there is an epimorphism f : P → M with P projective.
By hypothesis, P is projective lifting. Then there exists a maximal submodule K
such that Ker f ⊆ K. Since (P/Ker f)/(K/Ker f) ' P/K is simple, K/Ker f is a
maximal submodule of P/Ker f . Hence M has a maximal submodule.
(i)=⇒(iv) Assume that R is right perfect. Then, by Lemma 2.3, every projective
right R-module is lifting. Let Q be a quasi-projective module and let A be a sub-
module of Q. Consider the canonical epimorphism f : Q → Q/A. We can take
a projective module P such that Q is a homomorphic image of P . i.e., we have
an epimorphism g : P → Q. Since P is lifting, by [2, Lemma 17.17], there exists
a decomposition P = P1 ⊕ P2 such that P1 ≤ g−1(A) and fg|P2 : P2 → Q/A
is a projective cover. Because Q is a quasi-projective module, the decomposition
P = P1 ⊕ P2 induces a direct decomposition Q = g(P1) ⊕ g(P2) by Theorem 2.1.
Then g(P1) ≤ A and g(P2) ∩A � g(P2) hold. �

We give characterizations for semiperfect rings.

Theorem 4.2. The following statements are equivalent for a ring R:
(i) R is semiperfect;
(ii) Every finitely generated flat right R-module is lifting;
(iii) R is semilocal and idempotents lift modulo J(R);
(iv) RR is lifting;
(v) RR satisfies the lifting property for simple factor modules;
(vi) R is semilocal and every simple right R-module has a flat cover.
Proof. (i)=⇒(ii) Let L be a finitely generated flat right R-module. By [11, Corol-
lary 2] and Lemma 2.3, L is lifting.
(ii)=⇒(iii) We put R/J(R) = R. By hypothesis, RR is lifting. By the proof of
Theorem 4.1, R is semisimple. Let g be an idempotent in R. Then there exists a
decomposition R = gR⊕(1− g)R. Put gR = g1R and (1− g)R = g2R. We consider
the canonical epimorphism R

ϕ→ R. Since RR is lifting, there exists a decomposition
RR = Ai⊕A∗

i such that Ai ≤c ϕ−1(giR) in RR (i = 1, 2). Then RR = A1+A2+Ker
ϕ. Since Ker ϕ � RR, RR = A1 + A2. Moreover, A1 ∩ A2 � RR. By [12, 41.14],
RR = A1 ⊕ A2. Thus there exists a (necessarily) complete set {e1, e2} of pairwise
orthogonal idempotents in R with Ai = eiR (i = 1, 2). Then 1 = e1 + e2, where
ei ∈ giR (i = 1, 2). On the other hand, 1 = g1 + g2. By the uniqueness, ei = gi

(i = 1, 2).
(iii)=⇒(i) holds by [2, Theorem 27.6].
(iv)=⇒(v) is trivial.
(v)=⇒(iv) By Proposition 2.8, this part is clear.
(iii)=⇒(v) This part is a direct consequence of Proposition 2.7.
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(iv)=⇒(iii) Assume that RR is lifting. Then, by the proof of (ii)=⇒(iii), R is
semisimple and idempotents lift modulo J(R).
(iv)=⇒(vi) From the proof of Theorem 4.1 we see that R is semilocal. By Lemma
2.5, every factor module of RR has a projective cover, hence every cyclic right R-
module has a projective cover. Therefore every simple right R-module has a flat
cover.
(vi)=⇒(v) By [9, Theorem 3.8], every simple right R-module has a projective cover.
Let K be a maximal submodule of RR and let ϕ : R → R/K be the canonical
epimorphism. Since R/K has a projective cover, by [2, Lemma 17.17], there exists
a decomposition RR = eR⊕ (1− e)R such that (ϕ|eR) : eR → R/K is a projective
cover and (1−e)R ≤ K. Hence Ker (ϕ|eR) = K∩eR � eR. i.e., R = eR⊕ (1−e)R
such that K ∩ eR � eR. Thus RR satisfies the lifting property for simple factor
modules. �
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