KYUNGPOOK Math. J. 48(2008), 143-154

Finitely Generated Modules over Semilocal Rings and Characterizations of (Semi-)Perfect Rings

CHAEHOON CHANG

Information Technology Manpower Development Program, Kyungpook National University, Taegu 702-701, Korea

e-mail: yamaguchi21@hanmail.net

ABSTRACT. Lomp [9] has studied finitely generated projective modules over semilocal rings. He obtained the following: finitely generated projective modules over semilocal rings are semilocal. We shall give necessary and sufficient conditions for finitely generated modules to be semilocal modules. By using a lifting property, we also give characterizations of right perfect (semiperfect) rings. Our main results can be summarized as follows:

(1) Let M be a finitely generated module. Then M has finite hollow dimension if and only if M is weakly supplemented if and only if M is semilocal.

(2) A ring R is right perfect if and only if every flat right R-module is lifting and every right R-module has a flat cover if and only if every quasi-projective right R-module is lifting.

(3) A ring R is semiperfect if and only if every finitely generated flat right R-module is lifting if and only if R_R satisfies the lifting property for simple factor modules.

1. Introduction

In this note, all rings R considered are associative rings with identity and all modules are unital right R-modules unless indicated otherwise. For a module M, $\operatorname{Rad}(M)$, $\operatorname{Soc}(M)$, E(M), $\operatorname{End}_R(M)$ are the (Jacobson) radical, socle, injective hull and endomorphism ring of M, respectively. Let M be a module and let K be a submodule of M. K is called small submodule (or superfluous submodule) of M, abbreviated $K \ll M$, if, for every submodule $L \leq M$, K + L = M implies L = M. Let $N_1 \leq N_2 \leq M$. N_1 is a co-essential submodule of N_2 in M, abbreviated $N_1 \leq_c N_2$ in M, if $N_2/N_1 \ll M/N_1$. A submodule N of M is said to be co-closed in M (or a co-closed submodule of M), if N has no proper co-essential submodule in M. i.e., $N' \leq_c N$ in M implies N = N'. Let $N_1 \leq N_2 \leq M$. N_1 is said to be a co-closure of N_2 in M if N_1 is a co-closed submodule of M with $N_1 \leq_c N_2$ in M. Any submodule has a closure. However, a co-closure does not exist in general, for example, 2 \mathbb{Z} does not have a co-closure in $\mathbb{Z}_{\mathbb{Z}}$.

Let M be a module and let N and L be submodules of M. N is called a supplement of L if M = N + L and $N \cap L \ll N$. Note that any supplement

Received November 13, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 16D40, 16D99, 16L30.

Key words and phrases: perfect ring, semiperfect ring, semilocal ring, finitely generated module, lifting module, amply supplemented module.

¹⁴³

submodule (hence any direct summand) of a module M is co-closed in M. Following [12], a module M is supplemented if every submodule of M has a supplement. N is called a weak supplement of L if M = N + L and $N \cap L \ll M$. A module M is weakly supplemented if every submodule of M has a weak supplement. Let M and N be modules. An epimorphism $g: M \to N$ is called a small cover of N if Ker $g \ll M$. M is called a flat cover (resp. projective cover) of N if M is a small cover of N and M is a flat (resp. projective) module. Flat covers and projective covers do not exist in general. For example, \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$ does not have a flat cover. We know that if a module has a projective cover, it is unique up to isomorphism. However, this is not the case for the flat covers (cf., [1, Example 2.1]). A ring R is called semiperfect (resp. right perfect) if every finitely generated right R-module (resp. right R-module) has a projective cover. A ring R is said to be semilocal if R/J(R) is left (or right) semisimple ring.

2. Preliminaries

Theorem 2.1 ([3, Theorem 1.1.24]). For a module M, the following hold:

(a) If M is a quasi-injective module, then M is a fully invariant submodule of E(M).
(b) If M is a quasi-injective module, then any direct decomposition E(M) = E₁ ⊕ ... ⊕ E_n induces M = (M ∩ E₁) ⊕ ... ⊕ (M ∩ E_n).

(c) If M is a quasi-projective module with a projective cover $\varphi : P \to M$, Ker φ is a fully invariant submodule of P; whence any endomorphism of P induces an endomorphism of M.

(d) If M is a quasi-projective module with a projective cover $\varphi : P \to M$, then any direct decomposition $P = P_1 \oplus \cdots \oplus P_n$ induces $M = \varphi(P_1) \oplus \cdots \oplus \varphi(P_n)$.

Lemma 2.2. Let R be a ring such that every maximal right ideal of R is a direct summand of R_R . Then R is semisimple.

Proof. Assume that $\operatorname{Soc}(R_R) \leq R_R$. By [2, Theorem 2.8], there is a maximal submodule I_R such that $\operatorname{Soc}(R_R) \subseteq I_R$. By hypothesis, there exists a decomposition $R_R = I \oplus X$. Then, since X is a simple submodule of R_R , we see $X \subseteq \operatorname{Soc}(R_R) \subseteq I$, which is a contradiction. Hence $R = \operatorname{Soc}(R_R)$.

Lemma 2.3 (cf., [4] and [8]). A ring R is right perfect (semiperfect) if and only if every (finitely generated) projective right R-module is lifting.

Let $M = M_1 \oplus M_2$ and let $\varphi : M_1 \to M_2$ be an *R*-homomorphism. Put $\langle M_1 \xrightarrow{\varphi} M_2 \rangle = \{m_1 - \varphi(m_1) \mid m_1 \in M_1\}$. Then this is a submodule of M which is called the graph with respect to φ . Note that $M = M_1 \oplus M_2 = \langle M_1 \xrightarrow{\varphi} M_2 \rangle \oplus M_2$ (cf., [7]).

Proposition 2.4. Let R be a right perfect ring. Suppose that P is a projective module and P_1, \dots, P_n are indecomposable direct summands of P such that $P = P_1 + \dots + P_n$ and $\overline{P_1} \oplus \dots \oplus \overline{P_n}$. Then $P = P_1 \oplus \dots \oplus P_n$.

Proof. By Lemma 2.3, P is lifting. First we show $P_1 \oplus P_2 \leq_{\oplus} P$. Since $P_1 \leq_{\oplus} P$,

there exists a decomposition $P = P_1 \oplus P_1^*$. Let $\pi_{P_1} : P \to P_1$ and $\pi_{P_1^*} : P \to P_1^*$ be projections, respectively. We consider $\pi_{P_1^*}|_{P_2} : P_2 \to P_1^*$. Then $\pi_{P_1^*}(P_2)$ is not small in P_1^* . As P_1^* is lifting, there is a decomposition $P_1^* = \overline{P_1^*} \oplus \overline{\overline{P_1^*}}$ such that $\pi_{P_1^*}(P_2) \leq_c \overline{P_1^*}$ in P_1^* . Then $\pi_{P_1^*}(P_2) = \overline{P_1^*} \oplus (\pi_{P_1^*}(P_2) \cap \overline{\overline{P_1^*}})$. Since $(\pi_{P_1^*}(P_2) \cap \overline{\overline{P_1^*}}) \ll P_1^* \leq P$, $(\pi_{P_1^*}(P_2) \cap \overline{\overline{P_1^*}}) \ll P$. Hence $(\pi_{P_1^*}(P_2) \cap \overline{\overline{P_1^*}}) \subseteq \operatorname{Rad}(P)$. On the other hand,

$$P = P_1 + P_2 = P_1 \oplus P_1^* = P_1 \oplus \overline{P_1^*} \oplus \overline{\overline{P_1^*}}.$$

Let $\pi_{\overline{P_1^*}}: P \to \overline{P_1^*}$ and $\pi_{\overline{\overline{P_1^*}}}: P \to \overline{\overline{P_1^*}}$ be projections, respectively. Then $\pi_{P_1^*}(P_2) = \pi_{\overline{P_1^*}}(P_2) \oplus \pi_{\overline{\overline{P_1^*}}}(P_2)$ and $\pi_{\overline{P_1^*}}(P_2) = \overline{P_1^*}$. Since $\overline{P_1^*}$ is projective, the sequence $P_2 \xrightarrow{\pi_{\overline{P_1^*}}} \pi_{\overline{P_1^*}}(P_2) \to 0$ splits. Thus Ker $(\pi_{\overline{P_1^*}}) \leq_{\oplus} P_2$. Since P_2 is indecomposable, Ker $(\pi_{\overline{P_1^*}}) = 0$. Hence $P_2 \xrightarrow{\pi_{\overline{P_1^*}}} \pi_{\overline{P_1^*}}(P_2)$. Now, we define a map $\varphi: \pi_{\overline{P_1^*}}(P_2) \to P_1 \oplus \overline{\overline{P_1^*}}$ by $\pi_{\overline{P_1^*}}(p_2) \to \pi_{P_1}(p_2) + \pi_{\overline{\overline{P_1^*}}}(p_2)$. Then φ is well-defined. Since $P_2 \subseteq \langle \overline{P_1^*} \xrightarrow{\varphi} P_1 \oplus \overline{\overline{P_1^*}} \rangle$, $\langle \overline{P_1^*} \xrightarrow{\varphi} P_1 \oplus \overline{\overline{P_1^*}} \rangle = P_2 \oplus X$ for some X. Hence we get $P_1 + P_2 = P_1 \oplus P_2 \leq_{\oplus} P$. We put $P_1 \oplus P_2 = Q$. Using the case n - 1, we obtain

$$P = P_1 + \dots + P_n = Q \oplus P_3 \oplus \dots \oplus P_n.$$

Thus, the induction works.

Lemma 2.5 (cf., [10]). Let P be a projective module. Then the following statements are equivalent:
(i) Every factor module of P has a projective cover;
(ii) P is lifting.

Proposition 2.6. Let R be a ring such that A is a right ideal of R. If R/(A+J(R)) has a projective cover, then so does R/A.

Proof. Consider the canonical epimorphisms $R \xrightarrow{\pi_A} R/A \xrightarrow{\pi_{(A+J(R))}} R/(A+J(R))$. Then, by [2, Lemma 17.17], we can take an idempotent $e \in R$ for which $\pi_{(A+J(R))}\pi_A|_{eR}$: $eR \to R/(A+J(R))$ is a projective cover. Hence Ker $(\pi_{(A+J(R))}\pi_A|_{eR}) \ll eR$. Since R = eR + A + J(R), we obtain R = eR + A. Thus $\pi_A|_{eR}$: $eR \to R/A$ is an epimorphism. Since Ker $(\pi_A|_{eR}) \subseteq$ Ker $(\pi_{(A+J(R))}\pi_A|_{eR}) \ll eR, \pi_A|_{eR} : eR \to R/A$ is a projective cover. \Box

Proposition 2.7 (cf., [3]). Let R be a ring such that R/J(R) is semisimple and idempotents lift modulo J(R). Then R_R satisfies the lifting property for simple factor modules.

Proposition 2.8. Let R be a ring such that R_R satisfies the lifting property for simple factor modules. Then R_R is a lifting module. In other words, if every simple right R-module has a projective cover, then every cyclic right R-module has a projective cover.

Proof. Let $A_R \leq R_R$. We show that R/A has a projective cover. By Proposition 2.5, we may assume that $J(R) \subseteq A$. By [2, Theorem 2.8] and Lemma 2.2, R/J(R) is semisimple. By [2, Theorem 9.6], $(R/J(R))/(A/J(R)) \simeq R/A$, we see that R/A can be expressed as a direct sum of simple submodules. Since any simple right R-module has a projective cover, R/A has a projective cover.

We recall that a module M is called *semilocal* if M/Rad(M) is semisimple.

Lemma 2.9 (cf., [9] and [12, 21.6(4)]). Let R be a semilocal ring and let P be a finitely generated projective module. Then the following hold:

(a) $Rad(P) \ll P$.

(b) P is semilocal.

(c) $End_R(P)$ is semilocal.

(d) P is weakly supplemented.

Corollary 2.10. Let R be a ring. Then the following conditions are equivalent: (i) R is semilocal;

(ii) Every finitely generated projective right R-module is semilocal.

Proof. (ii) \Longrightarrow (i) is obvious.

(i) \Longrightarrow (ii) Let P be a finitely generated projective right R-module. Then there exists $\oplus_F R_i \xrightarrow{f} P \to 0$, where $R_i = R$ and F is a finite set. As R_R is weakly supplemented, $\oplus_F R_i$ is weakly supplemented. Since a weakly supplemented module is closed under a homomorphic image, P is weakly supplemented. Hence P is finitely generated projective weakly supplemented. Then $\operatorname{Rad}(P) \ll P$. By Lemma 2.9(b), P is semilocal.

Lemma 2.11. Let N be a module and let M be a lifting module. Suppose Ker $g \ll M \xrightarrow{g} N \to 0$ with $K \ll N$. Then $g^{-1}(K) \ll M$.

Proof. Since M is lifting, there exists a decomposition $M = M^* \oplus M^{**}$ such that $M^* \leq_c g^{-1}(K)$ in M. Moreover, $N = g(M^*) + g(M^{**}) = K + g(M^{**}) = g(M^{**})$. Then $M = \text{Ker } g + M^{**}$. Since Ker $g \ll M$, $M = M^{**}$. Thus $M^* = 0$. Hence $g^{-1}(K) \ll M$.

3. Finitely generated modules over semilocal rings

Recall that a module H is *hollow* if every proper submodule is small in H. A module M is said to have *finite hollow dimension* (or *finite dual Goldie dimension*) if there exists an exact sequence $M \xrightarrow{f} \bigoplus_{i=1}^{n} H_i \to 0$, where all the H_i are hollow and Ker $f \ll M$. Then n is called the *hollow dimension* of M.

Proposition 3.1 (cf., [9, Theorem 2.7]). Let M be a finitely generated module. Then the following statements are equivalent:

(i) *M* has finite hollow dimension;

(ii) *M* is weakly supplemented;

(iii) *M* is semilocal.

146

Proof. (i) \Longrightarrow (ii) By assumption, there exists $M \xrightarrow{f} \oplus_{i=1}^{n} H_i \to 0$, where all the H_i are hollow and Ker $f \ll M$. Then $\bigoplus_{i=1}^{n} H_i$ is weakly supplemented. Since a small cover of a weakly supplemented module is weakly supplemented, M is weakly supplemented.

(ii) \Longrightarrow (iii) Suppose that M is weakly supplemented. Since M is weakly supplemented, for any $L \leq M$ such that $\operatorname{Rad}(M) \subseteq L$, there exists a weak supplement L of M such that M = K + L and $K \cap L \ll M$. Hence $K \cap L \subseteq \operatorname{Rad}(M)$. Then $L/\operatorname{Rad}(M) \oplus (K + \operatorname{Rad}(M))/\operatorname{Rad}(M) = M/\operatorname{Rad}(M)$. Thus every submodule of $M/\operatorname{Rad}(M)$ is a direct summand.

(iii) \Longrightarrow (i) Consider the canonical epimorphism $M \xrightarrow{f} M/\operatorname{Rad}(M)$. Since $M/\operatorname{Rad}(M)$ is semisimple, there exists a decomposition $M/\operatorname{Rad}(M) = M_1/\operatorname{Rad}(M) \oplus \cdots \oplus M_n/\operatorname{Rad}(M)$, where $M_i/\operatorname{Rad}(M)$ is simple, $i = 1, \cdots, n$. Since M is finitely generated, $\operatorname{Rad}(M) \ll M$. Hence $M \xrightarrow{f} M/\operatorname{Rad}(M)$ is a small cover.

(iii) \Longrightarrow (ii) Assume that M is semilocal. Since $M/\operatorname{Rad}(M)$ is semisimple, for any $L \leq M$, there exists a decomposition $M/\operatorname{Rad}(M) = (L + \operatorname{Rad}(M))/\operatorname{Rad}(M) \oplus T/\operatorname{Rad}(M)$. Then $M = L + \operatorname{Rad}(M) + T = L + T$. Moreover, $L \cap T \ll M$. Thus M is weakly supplemented.

By Corollary 2.10 and Proposition 3.1, we get the following:

Corollary 3.2 (cf., [5, 18.10] or [9, Theorem 3.5]). Let R be a semilocal ring and let M be a finitely generated module. Then the following statements are equivalent: (i) M has finite hollow dimension;

(ii) *M* is weakly supplemented;

(iii) *M* is semilocal.

Lemma 3.3. Let R be a semilocal ring and let M be a finitely generated module. Then every supplement in M is weakly supplemented. Moreover, every co-closed submodule of M is weakly supplemented.

Proof. Let N be a supplement submodule of M. Then there exists a submodule K of M such that M = K + N and $K \cap N \ll N$. Since $M/K \simeq N/(K \cap N)$ is weakly supplemented, $N \xrightarrow{f} N/(K \cap N)$ is a small cover. Hence N is weakly supplemented. Finally, let K be a co-closed in M. Since $\operatorname{Rad}(K) = K \cap \operatorname{Rad}(M)$, $K/\operatorname{Rad}(K) \simeq (K + \operatorname{Rad}(M))/\operatorname{Rad}(M) \leq M/\operatorname{Rad}(M)$. Since $M/\operatorname{Rad}(M)$ is semisimple, $K/\operatorname{Rad}(K)$ is semisimple.

Let L and M be modules. Following [5], L is small M-projective if the canonical epimorphism $g: M \to M/K$ such that $K \ll M$ and any homomorphism $f: L \to M/K$, there exists a homomorphism $h: L \to M$ such that gh = f. L is Rad M-projective if the canonical epimorphism $g: M \to M/K$ such that $K \subseteq \operatorname{Rad}(M)$ and any homomorphism $f: L \to M/K$, there exists a homomorphism $h: L \to M$ such that gh = f. M is small self-projective if it is small M-projective and is Rad self-projective if it is Rad M-projective. It is easy to see that Rad M-projective modules are small M-projective. **Theorem 3.4.** Let R be a semilocal ring and let M be a finitely generated module. Then the following conditions are equivalent:

(i) M is Rad-M-projective (i.e., M is Rad-self-projective);

(ii) M is M-projective (i.e., M is self-projective);

(iii) M is small M-projective (i.e., M is small self-projective).

Proof. (ii) \Longrightarrow (iii) is obvious.

(iii) \Longrightarrow (ii) Suppose that M is small M-projective. Let K be a submodule of Mand let $f : M \to M/K$ be any homomorphism and $\pi : M \to M/K$ be the canonical epimorphism. For $(K + \operatorname{Rad}(M))/\operatorname{Rad}(M) \leq M/\operatorname{Rad}(M)$, there exists a direct summand $T/\operatorname{Rad}(M)$ of $M/\operatorname{Rad}(M)$ such that $M/\operatorname{Rad}(M) = (K + \operatorname{Rad}(M))/\operatorname{Rad}(M) \oplus T/\operatorname{Rad}(M)$, as $M/\operatorname{Rad}(M)$ is semisimple, Since $\operatorname{Rad}(M) \ll M$, $M = K + \operatorname{Rad}(M) + T = K + T$. Moreover, $(K + \operatorname{Rad}(M))/\operatorname{Rad}(M) \cap T/\operatorname{Rad}(M) = [(K + \operatorname{Rad}(M)) \cap T]/\operatorname{Rad}(M) = [(K \cap T) + \operatorname{Rad}(M)]/\operatorname{Rad}(M) = 0$. Hence $(K \cap T) \subseteq \operatorname{Rad}(M) \ll M$. Therefore $K \cap T \ll M$. Let $\pi_1 : K \to K/(K \cap T)$ be the canonical epimorphism. Define a map $g : M \to M/K \oplus K/(K \cap T)$ by $t + k \rightsquigarrow (\pi(t), \pi_1(k))$, for $t \in T, k \in K$. Then g is well-defined and a small cover. By hypothesis, there exists a homomorphism $h : T \to M = K + T$ such that gh = if, where $i : M/K \to M/K \oplus K/(K \cap T)$ is an inclusion map. Then $\pi h = f$. Thus M is M-projective.

$$(i) \Longrightarrow (iii)$$
 is trivial.

(iii) \Longrightarrow (i) Since M is finitely generated, $\operatorname{Rad}(M) \ll M$. By assumption, M is Rad-M-projective.

By Theorem 3.4 and [9, Corollary 3.12], we get the following:

Corollary 3.5. Let R be a semilocal ring and let M be a finitely generated module satisfying one of the following:

(a) M is Rad-self-projective,

(b) M is small self-projective.

Then $End_R(M)$ is semilocal.

Let L and M be modules. Following [5], L is *im-summand* (*im-co-closed*) Mprojective if the canonical epimorphism $g: M \to M/K$ such that and any homomorphism $f: L \to M/K$ such that Im f is a direct summand (co-closed) in M/K, there exists a homomorphism $h: L \to M$ such that gh = f. Note that im-co-closed Mprojective modules are im-summand M-projective. L is M-epi-projective if for any epimorphisms $p: M \to N$ and $f: L \to N$, there exists a homomorphism $h: L \to M$ such that ph = f. L is epi-projective if it is L-epi-projective. L is *im-summand* (*imco-closed*) small M-projective if the canonical epimorphism $g: M \to M/K$ and any homomorphism $f: L \to M/K$ such that Im f is a direct summand (co-closed) in M/K and $K \ll M$, there exists a homomorphism $h: L \to M$ such that gh = f. It is easy to see that im-co-closed small M-projective modules are im-summand small M-projective.

Remark 3.6. It is obvious that the following implications hold for a module:

(a) M-projective \implies small M-projective.

(b) M-projective \implies im-summand M-projective \implies im-summand small M-projective.

(c) M-projective \implies im-co-closed M-projective \implies im-co-closed small M-projective. (d) projective \implies self-projective (or quasi-projective) \implies epi-projective.

Lemma 3.7. Let M be a weakly supplemented module. Then the following conditions are equivalent:

(i) M is M-epi-projective (i.e., M is epi-projective);

(ii) *M* is *M*-projective (i.e., *M* is self-projective);

(iii) M is small M-projective (i.e., M is small self-projective).

Proof. (ii) \Longrightarrow (i) is obvious.

 $(i) \Longrightarrow (ii)$ Consider a diagram

$$M \xrightarrow{g} M/K \longrightarrow 0$$

11

where any homomorphism $f : M \to M/K$ and the canonical epimorphism $g: M \to M/K$. Then Im $f \leq M/K$. If Im f = M/K, then, by assumption, there exists a homomorphism $h: M \to M$ such that the above diagram commutes. If Im $f \leq M/K$. Put Im f = L/K. Since M/K is weakly supplemented, there exists a submodule T/K of M/K such that L/K + T/K = M/K and $L/K \cap T/K \ll M/K$. Then M = L + T and g(L) = Im f. By hypothesis, there exists a homomorphism $h: M \to M$ such that the above diagram commutes. (ii) \iff (iii) This follows from [6, Lemma 2.1].

By Lemma 3.7, "An epi-projective weakly supplemented module is self-projective" (cf., [6, Corollary 3.2]).

Lemma 3.8 (cf., [6, Corollary 2.2]). Let L be a module and let H be a hollow module. Then the following conditions are equivalent:

(i) L is im-summand H-projective;

(ii) L is im-summand small H-projective.

Proof. (i) \Longrightarrow (ii) is obvious.

 $(ii) \Longrightarrow (i)$ Consider a diagram

$$H \xrightarrow{g} H/K \longrightarrow 0$$

L

where any homomorphism $f: L \to H/K$ with Im $f \leq_{\oplus} H/K$ and the canonical epimorphism $g: H \to H/K$. Since H is hollow, $K \ll H$. By assumption, there exists a homomorphism $h: L \to H$ such that the above diagram commutes. \Box

Using a proof similar to that of Lemma 3.8, we get the following two results.

Corollary 3.9 (cf., [6, Corollary 2.2]). Let L be a module and let H be a hollow

module. Then the following conditions are equivalent:

(i) L is im-co-closed H-projective;

(ii) L is im-co-closed small H-projective.

Corollary 3.10. Let L be a module and let H be a hollow module. Then the following conditions are equivalent:

(i) L is im-summand H-projective;

(ii) L is H-epi-projective.

Recall that a module M is *amply supplemented* if, for any submodules A, B of M with M = A + B there exists a supplement P of A such that $P \subseteq B$. It is well-known from [12] that the following implications hold for a module:

"lifting \implies amply supplemented \implies supplemented \implies weakly supplemented \implies semilocal"

Lemma 3.11. Let L be a module and let M be an amply supplemented module. Suppose that every co-closed submodule of a factor module of M is a direct summand. Then the following conditions are equivalent:

(i) L is im-summand (small) M-projective;

(ii) L is im-co-closed (small) M-projective.

Proof. (ii) \Longrightarrow (i) Since every direct summand of a module is a co-closed submodule, L is im-summand M-projective.

 $(i) \Longrightarrow (ii)$ Consider a diagram

$$M \xrightarrow{g} M/K \longrightarrow 0$$

where any homomorphism $f: L \to M/K$ with Im f is co-closed in M/K and the canonical epimorphism $g: M \to M/K$. Since M/K is amply supplemented, there exists a co-closure T of Im f in M/K which is a direct summand of M/K. i.e., $T \leq_c \text{Im } f$ in M/K such that T is co-closed in M/K. Since Im f is co-closed in M/K. Since Im f is co-closed in M/K. T = Im $f \leq_{\oplus} M/K$. By assumption, there exists a homomorphism $h: L \to M$ such that the above diagram commutes.

By Lemma 3.8, 3.11, and Corollary 3.9, 3.10, the following holds:

Corollary 3.12. Let L be a module and let H be a hollow module. Then the following conditions are equivalent:

(i) L is im-summand (small) H-projective;

(ii) L is im-co-closed (small) H-projective;

(iii) L is H-epi-projective.

We recall that a module M is strongly discrete if it is self-projective and supplemented. It is well-known from [6] that the following implications hold for a module:

"strongly discrete \implies discrete \implies quasi-discrete \implies lifting".

The converse implications are not true in general.

Example 3.13. (1) Consider the quotient field K of a discrete valuation domain R which is not complete. Then K as an R-module is discrete but is not self-projective (cf., [6, pp. 902-903]).

(2) Let R be a discrete valuation ring with a prime ideal P. Then an injective hull E(R/P) of R/P is quasi-discrete but not discrete.

(3) Put $R = \mathbb{Z}/4\mathbb{Z}$ and $Q_R = R \oplus R$. Then a submodule $M_R = (1,2)R \oplus (1,0)R$ of Q_R is lifting but not quasi-discrete.

Theorem 3.14 (cf., [6, Theorem 3.4]). Let H be a hollow module. Then the following conditions are equivalent:

(i) *H* is strongly discrete;

(ii) For every $K \leq H$ ($K \ll H$) and for any homomorphism $f : H \to H/K$ with Im f = L/K, where L is co-closed in H, f can be lifted to H;

(iii) *H* is im-summand (small) *H*-projective;

(iv) *H* is im-co-closed (small) *H*-projective;

(v) H is epi-projective.

Proof. From the proof of [6, Lemma 2.1] we see that the \leq - and \ll -versions of condition (ii) are equivalent.

(i) \Longrightarrow (ii) Since *H* is lifting, there exist co-closures of submodules of *H*. Hence (ii) follows.

(ii) \Longrightarrow (iii) Since *H* is amply supplemented, the proof is similar to (b) \Longrightarrow (c) of [6, Theorem 2.4].

(iii) \iff (iv) This follows from Corollary 3.12.

 $(iv) \Longrightarrow (v)$ By Corollary 3.12, H is epi-projective.

(v) \Longrightarrow (i) Since *H* is lifting and epi-projective, *H* is strongly discrete by [6, Theorem 3.3].

By [6, Lemma 2.3, Theorem 2.4] and Corollary 3.12, we obtain the following:

Theorem 3.15. Let H be a projective hollow module satisfying one of the following: (a) H is im-summand (small) H-projective,

(b) H is im-co-closed (small) H-projective,

(c) H is epi-projective.

Then H is discrete.

4. Characterizations of (semi-)perfect rings

Following [1], a ring R is right generalized perfect (or right *G*-perfect) if every right R-module has a flat cover. It is easy to see that right perfect rings are right generalized perfect.

We give characterizations for right perfect rings.

Theorem 4.1. The following statements are equivalent for a ring R:

(i) R is right perfect;

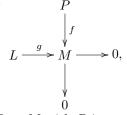
(ii) Every flat right R-module is lifting and R is right generalized perfect;

(iii) R is semilocal and every non-zero right R-module has a maximal submodule;

- (iv) Every quasi-projective right R-module is lifting;
- (v) Every countably generated free right R-module is lifting.

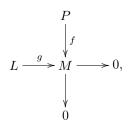
Proof. (i) \Longrightarrow (ii) Let *L* be a flat right *R*-module. By Lemma 2.3 and [2, Theorem 28.4], *L* is lifting. Since every projective module is flat, every right *R*-module has a flat cover.

 $(ii) \Longrightarrow (i)$ Consider a diagram



where any epimorphism $f: P \to M$ with P is projective and $g: L \to M$ is a flat cover. Since P is projective, there exists a homomorphism $h: P \to L$ such that the above diagram commutes. Since Ker $g \ll L$, h is an epimorphism. Then $h^{-1}(\text{Ker } g) = \text{Ker } gh$. By assumption, L is lifting. By Lemma 2.11, $h^{-1}(\text{Ker } g) = \text{Ker } f \ll P$. Hence $P \xrightarrow{f} M$ is a projective cover.

(ii) \Longrightarrow (iii) By assumption, R_R is lifting. Let A be a submodule of R_R with $J(R) \subseteq A$. We put $\overline{A} = A/J(R)$ and $\overline{R} = R/J(R)$. We may show $\overline{A} \leq_{\oplus} \overline{R}$. Since R_R is lifting, there exists a decomposition $R_R = A^* \oplus A^{**}$ such that $A^* \leq A$ and $A \cap A^{**} \ll R$. Consider the canonical map $\varphi = \varphi \mid_{J(R)} : R \to \overline{R}$. Then $\overline{R} = \varphi(A) \oplus \varphi(A^{**})$. In fact, $\varphi(A) = \overline{A}$. Hence $\overline{A} \leq_{\oplus} \overline{R}$. Therefore \overline{R} is semisimple. Let M be a right R-module. By assumption, we can consider a diagram



where any epimorphism $f: P \to M$ with P is projective and $g: L \to M$ is a flat cover. Since P is projective, there exists a homomorphism $h: P \to L$ such that the above diagram commutes. Since Ker $g \ll L$, h is an epimorphism. By hypothesis, Pis projective lifting. Then there exists a maximal submodule K of P such that Ker $f \subseteq K$. It is sufficient to show that P/Ker f has a maximal submodule. By Lemma 2.5, P/Ker f has a projective cover. Say $Q \xrightarrow{q} P/\text{Ker}$ f. Thus $Q/\text{Ker} q \simeq P/\text{Ker}$ f. Since Q is projective, Q has a maximal submodule L. Hence Ker $q \subseteq \text{Rad}(Q) \subseteq L$. This implies that L/Ker q is a maximal submodule of Q/Ker q. Hence P/Ker f has a maximal submodule. Therefore M has a maximal submodule. (iii) \Longrightarrow (i) holds by [2, Theorem 28.4]. $(i) \Longrightarrow (v)$ This follows from Lemma 2.3.

 $(v) \Longrightarrow (i)$ By hypothesis, R is semiperfect and \overline{R} is semisimple. Since $R^{(\mathbb{N})}$ is lifting, there exists a decomposition $R^{(\mathbb{N})} = X \oplus Y$ such that $X \leq \operatorname{Rad}(R^{(\mathbb{N})})$ and $\operatorname{Rad}(R^{(\mathbb{N})} \cap Y \ll Y)$. Since $\operatorname{Rad}(R^{(\mathbb{N})}) = \operatorname{Rad}(X) \oplus \operatorname{Rad}(Y)$ and $X \leq \operatorname{Rad}(R^{(\mathbb{N})})$, we see $\operatorname{Rad}(X) = X$. Hence, by [2, Lemma 28.3], J(R) is right *T*-nilpotent. Thus *R* is right perfect.

(iv) \Longrightarrow (iii) By assumption, R_R is lifting. Then \overline{R} is semisimple. Let M be a nonzero right R-module. Then there is an epimorphism $f: P \to M$ with P projective. By hypothesis, P is projective lifting. Then there exists a maximal submodule Ksuch that Ker $f \subseteq K$. Since $(P/\text{Ker } f)/(K/\text{Ker } f) \simeq P/K$ is simple, K/Ker f is a maximal submodule of P/Ker f. Hence M has a maximal submodule.

(i) \Longrightarrow (iv) Assume that R is right perfect. Then, by Lemma 2.3, every projective right R-module is lifting. Let Q be a quasi-projective module and let A be a submodule of Q. Consider the canonical epimorphism $f: Q \to Q/A$. We can take a projective module P such that Q is a homomorphic image of P. i.e., we have an epimorphism $g: P \to Q$. Since P is lifting, by [2, Lemma 17.17], there exists a decomposition $P = P_1 \oplus P_2$ such that $P_1 \leq g^{-1}(A)$ and $fg|_{P_2}: P_2 \to Q/A$ is a projective cover. Because Q is a quasi-projective module, the decomposition $P = P_1 \oplus P_2$ induces a direct decomposition $Q = g(P_1) \oplus g(P_2)$ by Theorem 2.1. Then $g(P_1) \leq A$ and $g(P_2) \cap A \ll g(P_2)$ hold.

We give characterizations for semiperfect rings.

Theorem 4.2. The following statements are equivalent for a ring R:

(i) *R* is semiperfect;

(ii) Every finitely generated flat right R-module is lifting;

(iii) R is semilocal and idempotents lift modulo J(R);

(iv) R_R is lifting;

(v) R_R satisfies the lifting property for simple factor modules;

(vi) R is semilocal and every simple right R-module has a flat cover.

Proof. (i) \Longrightarrow (ii) Let L be a finitely generated flat right R-module. By [11, Corollary 2] and Lemma 2.3, L is lifting.

(ii) \Longrightarrow (iii) We put $R/J(R) = \overline{R}$. By hypothesis, R_R is lifting. By the proof of Theorem 4.1, \overline{R} is semisimple. Let \overline{g} be an idempotent in \overline{R} . Then there exists a decomposition $\overline{R} = \overline{gR} \oplus \overline{(1-g)R}$. Put $\overline{gR} = \overline{g_1R}$ and $\overline{(1-g)R} = \overline{g_2R}$. We consider the canonical epimorphism $R \xrightarrow{\varphi} \overline{R}$. Since R_R is lifting, there exists a decomposition $R_R = A_i \oplus A_i^*$ such that $A_i \leq_c \varphi^{-1}(\overline{g_iR})$ in R_R (i = 1, 2). Then $R_R = A_1 + A_2 + \text{Ker } \varphi$. Since Ker $\varphi \ll R_R$, $R_R = A_1 + A_2$. Moreover, $A_1 \cap A_2 \ll R_R$. By [12, 41.14], $R_R = A_1 \oplus A_2$. Thus there exists a (necessarily) complete set $\{e_1, e_2\}$ of pairwise orthogonal idempotents in R with $A_i = e_i R$ (i = 1, 2). Then $\overline{1} = \overline{e_1} + \overline{e_2}$, where $\overline{e_i} \in \overline{g_iR}$ (i = 1, 2). On the other hand, $\overline{1} = \overline{g_1} + \overline{g_2}$. By the uniqueness, $\overline{e_i} = \overline{g_i}$ (i = 1, 2).

 $(iii) \Longrightarrow (i)$ holds by [2, Theorem 27.6].

 $(iv) \Longrightarrow (v)$ is trivial.

 $(v) \Longrightarrow (iv)$ By Proposition 2.8, this part is clear.

 $(iii) \Longrightarrow (v)$ This part is a direct consequence of Proposition 2.7.

(iv) \Longrightarrow (iii) Assume that R_R is lifting. Then, by the proof of (ii) \Longrightarrow (iii), \overline{R} is semisimple and idempotents lift modulo J(R).

 $(iv) \Longrightarrow (vi)$ From the proof of Theorem 4.1 we see that R is semilocal. By Lemma 2.5, every factor module of R_R has a projective cover, hence every cyclic right R-module has a projective cover. Therefore every simple right R-module has a flat cover.

(vi) \Longrightarrow (v) By [9, Theorem 3.8], every simple right *R*-module has a projective cover. Let *K* be a maximal submodule of R_R and let $\varphi : R \to R/K$ be the canonical epimorphism. Since R/K has a projective cover, by [2, Lemma 17.17], there exists a decomposition $R_R = eR \oplus (1-e)R$ such that $(\varphi|_{eR}) : eR \to R/K$ is a projective cover and $(1-e)R \leq K$. Hence Ker $(\varphi|_{eR}) = K \cap eR \ll eR$. i.e., $R = eR \oplus (1-e)R$ such that $K \cap eR \ll eR$. Thus R_R satisfies the lifting property for simple factor modules.

References

- A. Amini, B. Amini, M. Ershad, and H. Sharif, On generalized perfect rings, Comm. Algebra ,35(3)(2007), 953-963.
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin-Heidelberg-New York, (1992).
- [3] Y. Baba and K. Oshiro, Artinian Rings and Related Topics, Lecture Note.
- H. Bass, Finitistic Dimension and Homological Generalization of Semiprimary Rings, Trans. Amer. Math., 95(1960), 466-486.
- [5] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Birkhauser Boston, Boston (2007).
- [6] L. Ganesan and N. Vanaja, Strongly discrete modules, Comm. Algebra, 35(3)(2007), 897-913.
- [7] K. Hanada, Y. Kuratomi, and K. Oshiro, On direct sums of extending modules and internal exchange property, J. Algebra, 250(2002), 115-133.
- Y. Kuratomi and C. Chang, *Lifting modules over right perfect rings*, Comm. Algebra, 35(10)(2007), 3103-3109.
- [9] C. Lomp, On semilocal modules and rings, Comm. Algebra, 27(4)(1999), 1921-1935.
- [10] E. Mares, Semiperfect modules, Math. Z., 82(1963), 347-360.
- [11] I. I. Sakhajev, On the weak dimension of modules, rings, algebras. Projectivity of flat modules, Izv. Vyssh. Uchebn. Zaved. Mat., 2(1965), 152-157.
- [12] R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Science Publishers (1991).