KYUNGPOOK Math. J. 48(2008), 143-154

Finitely Generated Modules over Semilocal Rings and Char-
acterizations of (Semi-)Perfect Rings

CHAEHOON CHANG

Information Technology Manpower Development Program, Kyungpook National
University, Taequ 702-701, Korea
e-mail : yamaguchi21@hanmail.net

ABSTRACT. Lomp [9] has studied finitely generated projective modules over semilocal
rings. He obtained the following: finitely generated projective modules over semilocal
rings are semilocal. We shall give necessary and sufficient conditions for finitely generated
modules to be semilocal modules. By using a lifting property, we also give characterizations
of right perfect (semiperfect) rings. Our main results can be summarized as follows:

(1) Let M be a finitely generated module. Then M has finite hollow dimension if and
only if M is weakly supplemented if and only if M is semilocal.

(2) A ring R is right perfect if and only if every flat right R-module is lifting and
every right R-module has a flat cover if and only if every quasi-projective right R-module
is lifting.

(3) A ring R is semiperfect if and only if every finitely generated flat right R-module
is lifting if and only if Rr satisfies the lifting property for simple factor modules.

1. Introduction

In this note, all rings R considered are associative rings with identity and all
modules are unital right R-modules unless indicated otherwise. For a module M,
Rad(M), Soc(M), E(M), Endr(M) are the (Jacobson) radical, socle, injective hull
and endomorphism ring of M, respectively. Let M be a module and let K be a
submodule of M. K is called small submodule (or superfluous submodule) of M,
abbreviated K < M, if, for every submodule L < M, K + L = M implies L = M.
Let Ny < No < M. Nj is a co-essential submodule of Ny in M, abbreviated
Ny <. Ny in M, if No/N; < M/N;. A submodule N of M is said to be co-closed
in M (or a co-closed submodule of M), if N has no proper co-essential submodule
in M. ie., N' <., N in M implies N = N'. Let N; < Ny < M. N is said to be a
co-closure of Ny in M if N7 is a co-closed submodule of M with Ny <. Ny in M.
Any submodule of a module has a closure. However, a co-closure does not exist in
general, for example, 2Z does not have a co-closure in Zj,.

Let M be a module and let N and L be submodules of M. N is called a
supplement of L if M = N + L and NN L <« N. Note that any supplement
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submodule (hence any direct summand) of a module M is co-closed in M. Following
[12], a module M is supplemented if every submodule of M has a supplement. N
is called a weak supplement of L if M = N+ L and NN L < M. A module M is
weakly supplemented if every submodule of M has a weak supplement. Let M and
N be modules. An epimorphism g : M — N is called a small cover of N if Ker
g << M. M is called a flat cover (resp. projective cover) of N if M is a small cover
of N and M is a flat (resp. projective) module. Flat covers and projective covers
do not exist in general. For example, Z-module Z/27 does not have a flat cover.
We know that if a module has a projective cover, it is unique up to isomorphism.
However, this is not the case for the flat covers (cf., [1, Example 2.1]). A ring R
is called semiperfect (resp. right perfect) if every finitely generated right R-module
(resp. right R-module) has a projective cover. A ring R is said to be semilocal if
R/J(R) is left (or right) semisimple ring.

2. Preliminaries

Theorem 2.1 ([3, Theorem 1.1.24]). For a module M, the following hold:

(a) If M is a quasi-injective module, then M is a fully invariant submodule of E(M).
(b) If M is a quasi-injective module, then any direct decomposition E(M) = F1 ®
@ FE, induces M =(MNE)® - ®(MNE,).

(¢) If M is a quasi-projective module with a projective cover ¢ : P — M, Ker ¢
is a fully invariant submodule of P; whence any endomorphism of P induces an
endomorphism of M.

(d) If M is a quasi-projective module with a projective cover ¢ : P — M, then any
direct decomposition P =Py @ --- ® P, induces M = o(P1) ® -+ ® o(Fy,).

Lemma 2.2. Let R be a ring such that every mazimal right ideal of R is a direct
summand of Rr. Then R is semisimple.

Proof. Assume that Soc(Rr) < Rg. By [2, Theorem 2.8], there is a maximal
submodule I such that Soc(Rgr) C Ir. By hypothesis, there exists a decomposition
Rr = I®X. Then, since X is a simple submodule of Rg, we see X C Soc(Rgr) C I,
which is a contradiction. Hence R = Soc(RRg). O

Lemma 2.3 (cf., [4] and [8]). A ring R is right perfect (semiperfect) if and only if
every (finitely generated) projective right R-module is lifting.

Let M = M; & M> and let ¢ : My — M, be an R-homomorphism. Put
(M; % My) = {m; — @(my) | my € M,}. Then this is a submodule of M which is
called the graph with respect to ¢. Note that M = My & My = (M, R M) & My
(cf., [7]).

Proposition 2.4. Let R be a right perfect ring. Suppose that P is a projective

module and Py, --- , P, are indecomposable direct summands of P such that P =
P+ --+P,and PL®---®P,. Then P=P,®---D P,.

Proof. By Lemma 2.3, P is lifting. First we show P} & P» <g P. Since P; <g P,
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there exists a decomposition P = P; & P;'. Let 7p, : P — P; and TPy P — P} be
projections, respectively. We consider 7 Prlp; Py — Py. Thenn Py (P2) is not small

in Pf. As Py is lifting, there is a decomposition P} = ]T’“@le* such that mp« (P2) <.
Pil* in Pl* Then 7TP1*(P2) = ﬁf@ (7TP1*<P2) ﬂPil*) Since (7TP1*(P2) HPT*) < Pl* < P7
(mpr (P2) N Pf) < P. Hence (wp; (P,) N Pf) C Rad(P). On the other hand,

P=P+P,=P,oP; =P P &P

Let 5= : P — Pf and m5=: P — P7 be projections, respectively. Then mpr (Py) =
1

Fpi*

7TPT(P2) @ W?f(PQ) and 7TPT(P2) = P;. Since Py is projective, the sequence Py —

7TPT(P2) — 0 splits. Thus Ker (WPT) <g P». Since P, is indecomposable, Ker

(wpff) = 0. Hence P» ~ wpfl*(PQ). Now, we define a map ¢ : 7TPT*(P2) - P @P:ﬁ)y
(p2). Then ¢ is well-defined. Since P, C (P} % P, @ Py),

mpr(p2) = 7P (p2) +

Pr
(Py 2 p @ P;) = P ® X for some X. Hence we get P + Po = Py & Py <g P.
We put P & P, = Q. Using the case n — 1, we obtain

P=P++P,=Q0P3D - DPF,.
Thus, the induction works. O

Lemma 2.5 (cf., [10]). Let P be a projective module. Then the following statements
are equivalent:

(i) Every factor module of P has a projective cover;

(ii) P is lifting.

Proposition 2.6. Let R be a ring such that A is a right ideal of R. If R/(A+J(R))
has a projective cover, then so does R/A.

Proof. Consider the canonical epimorphisms R ™2 R/A AL R/(A+ J(R)).
Then, by [2, Lemma 17.17], we can take an idempotent e € R for which
T(A+J(R)TAler © eR — R/(A 4 J(R)) is a projective cover. Hence Ker
(Ta+s(r)TAler) < eR. Since R = eR + A + J(R), we obtain R = eR + A.
Thus 7aler : eR — R/A is an epimorphism. Since Ker (maler) € Ker
(Ta+s(r)TAler) < eR, Taler : eR — R/A is a projective cover. O

Proposition 2.7 (cf., [3]). Let R be a ring such that R/J(R) is semisimple and
idempotents lift modulo J(R). Then Rg satisfies the lifting property for simple fac-
tor modules.

Proposition 2.8. Let R be a ring such that Ry satisfies the lifting property for
simple factor modules. Then Rp is a lifting module. In other words, if every sim-
ple right R-module has a projective cover, then every cyclic right R-module has a
projective cover.
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Proof. Let Agp < Rpr. We show that R/A has a projective cover. By Proposition
2.5, we may assume that J(R) C A. By [2, Theorem 2.8] and Lemma 2.2, R/J(R)
is semisimple. By [2, Theorem 9.6], (R/J(R))/(A/J(R)) ~ R/A, we see that R/A
can be expressed as a direct sum of simple submodules. Since any simple right
R-module has a projective cover, R/A has a projective cover. O

We recall that a module M is called semilocal if M /Rad(M) is semisimple.

Lemma 2.9 (cf.,, [9] and [12, 21.6(4)]). Let R be a semilocal ring and let P be a
finitely generated projective module. Then the following hold:

(a) Rad(P) < P.

(b) P is semilocal.

(¢) Endgr(P) is semilocal.

(d) P is weakly supplemented.

Corollary 2.10. Let R be a ming. Then the following conditions are equivalent:
(i) R is semilocal;

(ii) Every finitely generated projective right R-module is semilocal.

Proof. (ii)==(i) is obvious.

(i)=(ii) Let P be a finitely generated projective right R-module. Then there
exists ®rR; Lpo 0, where R; = R and F is a finite set. As Rp is weakly sup-
plemented, ®rR; is weakly supplemented. Since a weakly supplemented module is
closed under a homomorphic image, P is weakly supplemented. Hence P is finitely
generated projective weakly supplemented. Then Rad(P) < P. By Lemma 2.9(b),
P is semilocal. O

Lemma 2.11. Let N be a module and let M be a lifting module. Suppose Ker
g< ML N -0 with K< N. Then g~ (K) < M.

Proof. Since M is lifting, there exists a decomposition M = M* & M** such that
M* <. g Y(K) in M. Moreover, N = g(M*) + g(M**) = K + g(M**) = g(M**).
Then M = Ker g + M**. Since Ker ¢ < M, M = M**. Thus M* = 0. Hence
g Y K)< M. O

3. Finitely generated modules over semilocal rings

Recall that a module H is hollow if every proper submodule is small in H. A
module M is said to have finite hollow dimension (or finite dual Goldie dimension)

if there exists an exact sequence M 4 @7 H; — 0, where all the H; are hollow
and Ker f < M. Then n is called the hollow dimension of M.

Proposition 3.1 (cf., [9, Theorem 2.7]). Let M be a finitely generated module.
Then the following statements are equivalent:

(i) M has finite hollow dimension;

(ii) M is weakly supplemented;

(iil) M s semilocal.
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Proof. (i)==(ii) By assumption, there exists M EN @ H; — 0, where all the
H; are hollow and Ker f <« M. Then @}, H,; is weakly supplemented. Since a
small cover of a weakly supplemented module is weakly supplemented, M is weakly
supplemented.

(ii)==(iii) Suppose that M is weakly supplemented. Since M is weakly supple-
mented, for any L < M such that Rad(M) C L, there exists a weak supplement
L of M such that M = K+ L and KNL < M. Hence K N L C Rad(M). Then
L/Rad(M) @ (K + Rad(M))/Rad(M) = M/Rad(M). Thus every submodule of
M/Rad(M) is a direct summand.

(iii)==(i) Consider the canonical epimorphism M ey /Rad(M). Since M /Rad(M)
is semisimple, there exists a decomposition M/Rad(M) = M;/Rad(M) & --- &
M, /Rad(M), where M;/Rad(M) is simple, ¢ = 1,--- ,n. Since M is finitely gener-

ated, Rad(M) < M. Hence M EN M/Rad(M) is a small cover.

(iii)==(ii) Assume that M is semilocal. Since M/Rad(M) is semisimple, for any
L < M, there exists a decomposition M/Rad(M) = (L + Rad(M))/Rad(M) &
T/Rad(M). Then M = L+ Rad(M)+T = L+ T. Moreover, LNT « M. Thus
M is weakly supplemented. O

By Corollary 2.10 and Proposition 3.1, we get the following;:

Corollary 3.2 (cf., [5, 18.10] or [9, Theorem 3.5]). Let R be a semilocal ring and
let M be a finitely generated module. Then the following statements are equivalent:
(i) M has finite hollow dimension;

(ii) M is weakly supplemented;

(iii) M is semilocal.

Lemma 3.3. Let R be a semilocal ming and let M be a finitely generated module.
Then every supplement in M 1is weakly supplemented. Moreover, every co-closed
submodule of M is weakly supplemented.

Proof. Let N be a supplement submodule of M. Then there exists a submodule
K of M such that M = K+ N and K NN < N. Since M/K ~ N/(KNN) is

weakly supplemented, N LN /(K N N) is a small cover. Hence N is weakly sup-
plemented. Finally, let K be a co-closed in M. Since Rad(K) = K N Rad(M),
K/Rad(K) ~ (K + Rad(M))/Rad(M) < M/Rad(M). Since M/Rad(M) is
semisimple, K /Rad(K) is semisimple. O

Let L and M be modules. Following [5], L is small M -projective if the canon-
ical epimorphism g : M — M/K such that K < M and any homomorphism
f: L — M/K, there exists a homomorphism h : . — M such that gh = f. L is Rad
M -projective if the canonical epimorphism ¢g : M — M/K such that K C Rad(M)
and any homomorphism f : L — M/K, there exists a homomorphism h : L — M
such that gh = f. M is small self-projective if it is small M-projective and is Rad
self-projective if it is Rad M-projective. It is easy to see that Rad M-projective
modules are small M-projective.
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Theorem 3.4. Let R be a semilocal ring and let M be a finitely generated module.
Then the following conditions are equivalent:

(i) M is Rad-M -projective (i.e., M is Rad-self-projective);

(ii) M is M-projective (i.e.,M is self-projective);

(iii) M is small M -projective (i.e., M is small self-projective).

Proof. (ii)==(iii) is obvious.

(iii)==-(ii) Suppose that M is small M-projective. Let K be a submodule of M
and let f : M — M/K be any homomorphism and 7 : M — M/K be the
canonical epimorphism. For (K + Rad(M))/Rad(M) < M/Rad(M), there ex-
ists a direct summand T/Rad(M) of M/Rad(M) such that M/Rad(M) = (K +
Rad(M))/Rad(M)@T/Rad(M), as M /Rad(M) is semisimple, Since Rad(M) < M,
M = K+Rad(M)+T = K+T. Moreover, (K+Rad(M))/Rad(M)NT/Rad(M) =
[(K 4+ Rad(M)) N T]/Rad(M) = [(K NT) + Rad(M)]/Rad(M) = 0. Hence
(KNT) C Rad(M) < M. Therefore KNT <« M. Let m : K — K/(KNT)
be the canonical epimorphism. Define a map g : M — M/K @ K/(K NT) by
t+k ~ (mw(t), m(k)), for t € T, k € K. Then g is well-defined and a small cover.
By hypothesis, there exists a homomorphism A : T — M = K + T such that
gh=1if, wherei: M/K — M/K & K/(KNT) is an inclusion map. Then wh = f.
Thus M is M-projective.

(i)=(iii) is trivial.

(ili)==(i) Since M is finitely generated, Rad(M) <« M. By assumption, M is
Rad-M-projective. O

By Theorem 3.4 and [9, Corollary 3.12], we get the following:

Corollary 3.5. Let R be a semilocal ring and let M be a finitely generated module
satisfying one of the following:

(a) M is Rad-self-projective,

(b) M is small self-projective.

Then Endr(M) is semilocal.

Let L and M be modules. Following [5], L is im-summand (im-co-closed) M -
projective if the canonical epimorphism g : M — M /K such that and any homomor-
phism f : L — M/K such that Im f is a direct summand (co-closed) in M /K, there
exists a homomorphism h : L. — M such that gh = f. Note that im-co-closed M-
projective modules are im-summand M-projective. L is M -epi-projective if for any
epimorphisms p : M — N and f : L — N, there exists a homomorphism A : L — M
such that ph = f. L is epi-projective if it is L-epi-projective. L is im-summand (im-
co-closed) small M -projective if the canonical epimorphism g : M — M /K and any
homomorphism f : L — M/K such that Im f is a direct summand (co-closed) in
M/K and K <« M, there exists a homomorphism h : L — M such that gh = f. It
is easy to see that im-co-closed small M-projective modules are im-summand small
M-projective.

Remark 3.6. It is obvious that the following implications hold for a module:
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(a) M-projective = small M-projective.

(b) M-projective = im-summand M-projective = im-summand small M-
projective.

(¢) M-projective = im-co-closed M-projective = im-co-closed small M-projective.
(d) projective = self-projective (or quasi-projective) = epi-projective.

Lemma 3.7. Let M be a weakly supplemented module. Then the following condi-
tions are equivalent:

(i) M is M-epi-projective (i.e., M is epi-projective);

(ii) M is M-projective (i.e., M is self-projective);

(iii) M is small M-projective (i.e., M is small self-projective).

Proof. (ii)=(i) is obvious.

(i)==(ii) Consider a diagram M

|s
M— M/K 0,
where any homomorphism f : M — M/K and the canonical epimorphism
g: M — M/K. Then Im f < M/K. If Im f = M/K, then, by assumption, there
exists a homomorphism h : M — M such that the above diagram commutes. If Im
f<M/K. Put Im f = L/K. Since M/K is weakly supplemented, there exists a
submodule T/K of M/K such that L/K+T/K = M/K and L/KNT/K < M/K.
Then M = L+ T and g(L) = Im f. By hypothesis, there exists a homomorphism
h: M — M such that the above diagram commutes. (ii)<=>(iii) This follows from
[6, Lemma 2.1]. O

By Lemma 3.7, “An epi-projective weakly supplemented module is self-
projective” (cf., [6, Corollary 3.2]).

Lemma 3.8 (cf., [6, Corollary 2.2]). Let L be a module and let H be a hollow
module. Then the following conditions are equivalent:
(i) L is im-summand H-projective;
(ii) L is im-summand small H-projective.
Proof. (i)=(ii) is obvious.
(iil)==(i) Consider a diagram I
|
H—~H/K 0,
where any homomorphism f : L — H/K with Im f <g H/K and the canonical

epimorphism ¢g : H — H/K. Since H is hollow, K < H. By assumption, there
exists a homomorphism h : L — H such that the above diagram commutes. O

Using a proof similar to that of Lemma 3.8, we get the following two results.

Corollary 3.9 (cf., [6, Corollary 2.2]). Let L be a module and let H be a hollow
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module. Then the following conditions are equivalent:

(i) L is im-co-closed H -projective;

(ii) L is im-co-closed small H-projective.

Corollary 3.10. Let L be a module and let H be a hollow module. Then the
following conditions are equivalent:

(i) L is im-summand H -projective;

(ii) L is H-epi-projective.

Recall that a module M is amply supplemented if, for any submodules A, B
of M with M = A + B there exists a supplement P of A such that P C B. It is
well-known from [12] that the following implications hold for a module:

“lifting = amply supplemented = supplemented = weakly supplemented
—> semilocal”

Lemma 3.11. Let L be a module and let M be an amply supplemented module.
Suppose that every co-closed submodule of a factor module of M is a direct sum-
mand. Then the following conditions are equivalent:

(i) L is im-summand (small) M -projective;

(ii) L is im-co-closed (small) M -projective.

Proof. (ii)==(i) Since every direct summand of a module is a co-closed submodule,
L is im-summand M-projective.

(i)=(ii) Consider a diagram I

|
M —2~M/K 0,
where any homomorphism f : L — M/K with Im f is co-closed in M/K and the
canonical epimorphism g : M — M/K. Since M /K is amply supplemented, there
exists a co-closure T' of Im f in M/K which is a direct summand of M/K. i.e.,
T <. Im f in M/K such that T is co-closed in M/K. Since Im f is co-closed
in M/K, T =Im f <¢ M/K. By assumption, there exists a homomorphism
h : L — M such that the above diagram commutes. |

By Lemma 3.8, 3.11, and Corollary 3.9, 3.10, the following holds:

Corollary 3.12. Let L be a module and let H be a hollow module. Then the
following conditions are equivalent:
(i) L is im-summand (small) H-projective;
(ii) L is im-co-closed (small) H-projective;
(iii) L is H-epi-projective.

We recall that a module M is strongly discrete if it is self-projective and sup-
plemented. It is well-known from [6] that the following implications hold for a

module:
“strongly discrete = discrete = quasi-discrete = lifting”.

The converse implications are not true in general.
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Example 3.13. (1) Consider the quotient field K of a discrete valuation domain R
which is not complete. Then K as an R-module is discrete but is not self-projective
(cf., [6, pp. 902-903]).

(2) Let R be a discrete valuation ring with a prime ideal P. Then an injective hull
E(R/P) of R/P is quasi-discrete but not discrete.

(3) Put R=7Z/47Z and Qr = R® R. Then a submodule Mr = (1,2)R® (1,0)R of
Qg is lifting but not quasi-discrete.

Theorem 3.14 (cf., [6, Theorem 3.4]). Let H be a hollow module. Then the
following conditions are equivalent:

(i) H is strongly discrete;

(ii) For every K < H (K < H) and for any homomorphism f : H — H/K with
Im f=L/K, where L is co-closed in H, f can be lifted to H;

(iii) H is im-summand (small) H-projective;

(iv) H is im-co-closed (small) H-projective;

(v) H is epi-projective.

Proof. From the proof of [6, Lemma 2.1] we see that the <- and <-versions of
condition (ii) are equivalent.

(i)==(ii) Since H is lifting, there exist co-closures of submodules of H. Hence (ii)
follows.

(ii)=(iii) Since H is amply supplemented, the proof is similar to (b)==(c) of [6,
Theorem 2.4].

(iii)<=>(iv) This follows from Corollary 3.12.

(iv)=(v) By Corollary 3.12, H is epi-projective.

v)=>(i) Since H is lifting and epi-projective, H is strongly discrete by [6, Theorem
3.3]. O

By [6, Lemma 2.3, Theorem 2.4] and Corollary 3.12, we obtain the following:

Theorem 3.15. Let H be a projective hollow module satisfying one of the following:
(a) H is im-summand (small) H-projective,

(b) H is im-co-closed (small) H-projective,

(¢) H is epi-projective.

Then H s discrete.

4. Characterizations of (semi-)perfect rings

Following [1], a ring R is right generalized perfect (or right G-perfect) if every
right R-module has a flat cover. It is easy to see that right perfect rings are right
generalized perfect.

We give characterizations for right perfect rings.

Theorem 4.1. The following statements are equivalent for a ring R:
(i) R is right perfect;
(ii) Every flat right R-module is lifting and R is right generalized perfect;
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(iii) R s semilocal and every non-zero right R-module has a mazimal submodule;
(iv) BEwvery quasi-projective right R-module is lifting;

(v) Every countably generated free right R-module is lifting.

Proof. (i)=(ii) Let L be a flat right R-module. By Lemma 2.3 and [2, Theorem
28.4], L is lifting. Since every projective module is flat, every right R-module has a
flat cover.

(ii)==(i) Consider a diagram P

where any epimorphism f : P — M with P is projective and g : L — M is a flat
cover. Since P is projective, there exists a homomorphism h : P — L such that the
above diagram commutes. Since Ker g < L, h is an epimorphism. Then h~!(Ker
g) = Ker gh. By assumption, L is lifting. By Lemma 2.11, h~!(Ker g) = Ker

gh =Ker f <« P. Hence P L Misa projective cover.

(ii)==(iii) By assumption, Rp is lifting. Let A be a submodule of Rr with J(R) C
A. We put A = A/J(R) and R = R/J(R). We may show A <g R. Since
Rp is lifting, there exists a decomposition Rgp = A* & A** such that A* < A
and AN A < R. Consider the canonical map ¢ = ¢ [;g): R — R. Then
R=p(A)®p(A*). In fact, o(A) = A. Hence A <g R. Therefore R is semisimple.
Let M be a right R-module. By assumption, we can consider a diagram

where any epimorphism f : P — M with P is projective and g : L — M is a flat
cover. Since P is projective, there exists a homomorphism h : P — L such that the
above diagram commutes. Since Ker g < L, h is an epimorphism. By hypothesis, P
is projective lifting. Then there exists a maximal submodule K of P such that Ker
f C K. It is sufficient to show that P/Ker f has a maximal submodule. By Lemma
2.5, P/Ker f has a projective cover. Say Q - P/Ker f. Thus Q/Ker q~ P/Ker f.
Since @ is projective, ) has a maximal submodule L. Hence Ker q C Rad(Q) C L.
This implies that L/Ker q is a maximal submodule of @ /Ker q. Hence P/Ker f has
a maximal submodule. Therefore M has a maximal submodule.

(iii)==(i) holds by [2, Theorem 28.4].
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(i)==(v) This follows from Lemma 2.3.

(v)==(i) By hypothesis, R is semiperfect and R is semisimple. Since R™) is lift-
ing, there exists a decomposition R™) = X @ Y such that X < Rad(R™) and
Rad(RMNY < Y. Since Rad(R™) = Rad(X) @ Rad(Y) and X < Rad(R™), we
see Rad(X) = X. Hence, by [2, Lemma 28.3], J(R) is right T-nilpotent. Thus R is
right perfect.

(iv)==(iii) By assumption, Rp is lifting. Then R is semisimple. Let M be a non-
zero right R-module. Then there is an epimorphism f : P — M with P projective.
By hypothesis, P is projective lifting. Then there exists a maximal submodule K
such that Ker f C K. Since (P/Ker f)/(K/Ker f) ~ P/K is simple, K/Ker f is a
maximal submodule of P/Ker f. Hence M has a maximal submodule.

(i)=(iv) Assume that R is right perfect. Then, by Lemma 2.3, every projective
right R-module is lifting. Let @ be a quasi-projective module and let A be a sub-
module of Q. Consider the canonical epimorphism f : Q@ — Q/A. We can take
a projective module P such that @ is a homomorphic image of P. i.e., we have
an epimorphism g : P — Q. Since P is lifting, by [2, Lemma 17.17], there exists
a decomposition P = P; & P, such that Py < ¢g7'(A) and fglp, : P» — Q/A
is a projective cover. Because @ is a quasi-projective module, the decomposition
P = P; & P, induces a direct decomposition @ = g(P1) & g(Ps) by Theorem 2.1.
Then g(P;) < A and g(P;) N A < g(P2) hold. O

We give characterizations for semiperfect rings.

Theorem 4.2. The following statements are equivalent for a ring R:
(i) R is semiperfect;

(ii) Every finitely generated flat right R-module is lifting;

(iii) R 1is semilocal and idempotents lift modulo J(R);

(iv) Rpg is lifting;

(v) Rg satisfies the lifting property for simple factor modules;

(vi)

v)
i) R is semilocal and every simple right R-module has a flat cover.

v
Proof. (i)=>(ii) Let L be a finitely generated flat right R-module. By [11, Corol-
lary 2] and Lemma 2.3, L is lifting.

(il)==(iii) We put R/J(R) = R. By hypothesis, Rp is lifting. By the proof of
Theorem 4.1, R is semisimple. Let § be an idempotent in R. Then there exists a

decomposition R = gR®(1 — g)R. Put gR = g1 Rand (1 — g)R = goR. We consider
the canonical epimorphism R - R. Since Rp is lifting, there exists a decomposition
Rp = A;® A} such that A; <. ¢ '(g;R) in Rg (i = 1,2). Then Rg = A; +As+Ker
©. Since Ker ¢ < Rg, Rgp = A1 + As. Moreover, A} N Ay < Rp. By [12, 41.14],
Rp = A; ® As. Thus there exists a (necessarily) complete set {e1,ea} of pairwise
orthogonal idempotents in R with A; = ¢;R (i = 1,2). Then 1 = &7 + €3, where
€ € giR (i = 1,2). On the other hand, T = g7 + g5. By the uniqueness, & = g;
(i=1,2).

(iii)==(i) holds by [2, Theorem 27.6].

(iv)==(v) is trivial.

(v)=>(iv) By Proposition 2.8, this part is clear.

(

ili)==-(v) This part is a direct consequence of Proposition 2.7.
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(iv)==(iii) Assume that Rp is lifting. Then, by the proof of (ii)==(iii), R is
semisimple and idempotents lift modulo J(R).

(iv)=>(vi) From the proof of Theorem 4.1 we see that R is semilocal. By Lemma
2.5, every factor module of Rr has a projective cover, hence every cyclic right R-
module has a projective cover. Therefore every simple right R-module has a flat
cover.

(vi)=(v) By [9, Theorem 3.8], every simple right R-module has a projective cover.
Let K be a maximal submodule of Rr and let ¢ : R — R/K be the canonical
epimorphism. Since R/K has a projective cover, by [2, Lemma 17.17], there exists
a decomposition Rp = eR @ (1 — e)R such that (¢|.r) : eR — R/K is a projective
cover and (1—e)R < K. Hence Ker (¢|cg) = KNeR < eR. i.e., R=eR®(1—¢)R
such that K NeR < eR. Thus Rpg satisfies the lifting property for simple factor
modules. (]
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