• Title/Summary/Keyword: resolvent

Search Result 103, Processing Time 0.026 seconds

Sensitivity Analysis for Generalized Nonlinear Implicit Quasi-variational Inclusions

  • Jeong, Jae Ug
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.345-356
    • /
    • 2006
  • In this paper, by using the concept of the resolvent operator, we study the behavior and sensitivity analysis of the solution set for a new class of parametric generalized nonlinear implicit quasi-variational inclusion problem in $L_p(p{\geq}2)$ spaces. The results presented in this paper are new and generalize many known results in this field.

  • PDF

BOUNDEDNESS OF THE SOLUTIONS OF VOLTERRA DIFFERENCE EQUATIONS

  • Choi, Sung Kyu;Goo, Yoon Hoe;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.287-296
    • /
    • 2007
  • Using the representation of the solution by means of the resolvent, we study the boundedness of the solutions of some Volterra difference equations.

  • PDF

A PROXIMAL POINT ALGORITHM FOR SOLVING THE GENERAL VARIATIONAL INCLUSIONS WITH M(·, ·)-MONOTONE OPERATORS IN BANACH SPACES

  • Chen, Junmin;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • v.29 no.3
    • /
    • pp.315-326
    • /
    • 2013
  • In this paper, a new monotonicity, $M({\cdot},{\cdot})$-monotonicity, is introduced in Banach spaces, and the resolvent operator of an $M({\cdot},{\cdot})$-monotone operator is proved to be single valued and Lipschitz continuous. By using the resolvent operator technique associated with $M({\cdot},{\cdot})$-monotone operators, we construct a proximal point algorithm for solving a class of variational inclusions. And we prove the convergence of the sequences generated by the proximal point algorithms in Banach spaces. The results in this paper extend and improve some known results in the literature.

MIXED QUASI VARIATIONAL INEQUALITIES INVOLVING FOUR NONLINEAR OPERATORS

  • Pervez, Amjad;Khan, Awais Gul;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.17-35
    • /
    • 2020
  • In this paper we introduce and consider a new class of variational inequalities with four operators. This class is called the extended general mixed quasi variational inequality. We show that the extended general mixed quasi variational inequality is equivalent to the fixed point problem. We use this alternative equivalent formulation to discuss the existence of a solution of extended general mixed quasi variational inequality and also develop several iterative methods for solving extended general mixed quasi variational inequality and its variant forms. We consider the convergence analysis of the proposed iterative methods under appropriate conditions. We also introduce a new class of resolvent equation, which is called the extended general implicit resolvent equation and establish an equivalent relation between the extended general implicit resolvent equation and the extended general mixed quasi variational inequality. Some special cases are also discussed.

FRACTIONAL DYNAMICAL SYSTEMS FOR VARIATIONAL INCLUSIONS INVOLVING DIFFERENCE OF OPERATORS

  • Khan, Awais Gul;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.207-225
    • /
    • 2019
  • In the present paper, we propose some new fractional dynamical systems. These dynamical systems are associated with the variational inclusions involving difference of operators problem. The equivalence between the variational inclusion problems and the fixed point problems and as well as the resolvent equations are used to suggest fractional resolvent dynamical systems and fractional resolvent equation dynamical systems, respectively. We show that these dynamical systems converge ${\alpha}$-exponentially to the unique solution of variational inclusion problems under fewer restrictions imposed on operators and parameters. Several special cases also discussed.

CONTROLLABILITY OF IMPULSIVE NEUTRAL STOCHASTIC FUNCTIONAL INTEGRODIFFERENTIAL SYSTEM VIA RESOLVENT OPERATOR

  • K. RAMKUMAR;K. RAVIKUMAR;DIMPLEKUMAR CHALISHAJAR;A. ANGURAJ;MAMADOU ABDOUL DIOP
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.1_2
    • /
    • pp.23-40
    • /
    • 2023
  • This paper is concerned by the controllability results of impulsive neutral stochastic functional integrodifferential equations (INSFIDEs) driven by fractional Brownian motion with infinite delay in a real separable Hilbert space. The controllability results are obtained using stochastic analysis, Krasnoselkii fixed point method and the theory of resolvent operator in the sense of Grimmer. A practical example is provided to illustrate the viability of the abstract result of this work.

GENERAL FRAMEWORK FOR PROXIMAL POINT ALGORITHMS ON (A, η)-MAXIMAL MONOTONICIT FOR NONLINEAR VARIATIONAL INCLUSIONS

  • Verma, Ram U.
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.685-693
    • /
    • 2011
  • General framework for proximal point algorithms based on the notion of (A, ${\eta}$)-maximal monotonicity (also referred to as (A, ${\eta}$)-monotonicity in literature) is developed. Linear convergence analysis for this class of algorithms to the context of solving a general class of nonlinear variational inclusion problems is successfully achieved along with some results on the generalized resolvent corresponding to (A, ${\eta}$)-monotonicity. The obtained results generalize and unify a wide range of investigations readily available in literature.

MULTIGRID METHOD FOR NONLINEAR INTEGRAL EQUATIONS

  • HOSAE LEE
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.487-500
    • /
    • 1997
  • In this paper we introduce a multigrid method for solving the nonliear Urysohn integral equation. The algorithm is derived from a discrete resolvent equation which approximates the continuous resolvent equation of the nonlinear Urysohn integral equa-tion. The algorithm is mathematically equivalent to Atkinson's adap-tive twogrid iteration. But the two are different computationally. We show the convergence of the algorithm and its equivalence to Atkinson's adaptive twogrid iteration. in our numerical example we compare our algorithm to other multigrid methods for solving the nonliear Urysohn integral equation including the nonlinear multigrid nethod introduced by hackbush.

EXISTENCE AND CONTROLLABILITY OF FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL SYSTEMS WITH STATE-DEPENDENT DELAY IN BANACH SPACES

  • KAILASAVALLI, SUBRAMANIAN;SUGANYA, SELVARAJ;ARJUNAN, MANI MALLIKA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.51-82
    • /
    • 2016
  • In view of ideas for semigroups, fractional calculus, resolvent operator and Banach contraction principle, this manuscript is generally included with existence and controllability (EaC) results for fractional neutral integro-differential systems (FNIDS) with state-dependent delay (SDD) in Banach spaces. Finally, an examples are also provided to illustrate the theoretical results.