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A PROXIMAL POINT ALGORITHM FOR SOLVING THE
GENERAL VARIATIONAL INCLUSIONS WITH

M(·, ·)-MONOTONE OPERATORS IN BANACH SPACES

Junmin Chen*, Xian Wang, and Zhen He

Abstract. In this paper, a new monotonicity, M(·, ·)-monotonicity,is
introduced in Banach spaces, and the resolvent operator of an M(·, ·)-
monotone operator is proved to be single valued and Lipschitz continu-

ous. By using the resolvent operator technique associated with M(·, ·)-
monotone operators, we construct a proximal point algorithm for solving

a class of variational inclusions. And we prove the convergence of the

sequences generated by the proximal point algorithms in Banach spaces.
The results in this paper extend and improve some known results in the

literature.

1. Introduction and preliminaries

Variational inequalities and variational inclusions are among the most inter-
esting and important mathematical problems and have been studied intensively
in the past years, since they have wide applications in the optimization and
control, economics and transportation equilibrium, engineering science. For
these reasons, many existence results and iterative algorithms for various vari-
ational inclusions have been studied. For details, we refer the reader to [1-10].
Recently, Pennanen [11] introduced over-relaxed the Eckstein-Bertsekas prox-
imal point algorithm [12] and using it has shown that the sequence converges
linearly to a solution to the following variational inclusion problem: for finding
x ∈ H, such that

0 ∈ T (x), (1.1)
where H is Hilbert space, T : H → 2H is a set-valued mapping on H. On
the basis of this new version of the proximal point algorithm, Pennanen [11]
studied a localized version of the maximal monotonicity, and has shown that
it ensures the local convergence of the over-relaxed proximal point algorithm.
Furthermore, the local convergence of multiplier methods for a general class of
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problems is established. This, in a way, presents specializations as new conver-
gence results for multiplier methods for nonmonotone variational inequalities
and nonconvex nonlinear programming.

Verma [13] develop a hybrid version of the Eckstein-Bertsekas proximal point
algorithm based on the notions of A-maximal monotonicity [4] and (A, η)-
maximal monotonicity [14] for solving the variational inclusion problem (1.1).
These notions generalize the general class of maximal monotone set-valued
mappings, including the notion of H-maximal monotonicity introduced by Fang
and Huang [15] in a Hilbert space.

Very recently, Juhe Sun, Liwei Zhang, Xiantao Xiao [17] introduced a new
monotonicity, M(·, ·)-monotonicity, and a proximal point algorithm is con-
structed to solve a class of variational inequalities in Hilbert space.

Motivated and inspired by the research work going on this field, in this
paper, we consider the inclusion problem:

0 ∈ G(u) + T (u), (1.2)

where G : X → X∗ is a single-valued operator and T : X → 2X
∗

is a set-valued
mapping on X. And we develop the proximal point algorithm for solving this
general variational inclusion in Banach space.

Let X be a real Banach space with dual space X∗, 〈·, ·〉 be the dual pair
between X and X∗, and 2X

∗
denote the family of all the nonempty subset of

X∗. The generalized duality mapping Jq(x) : X → 2X is defined by

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1},

where q > 1 is a constant. In particular, J2 is the usual normalized duality
mapping. It is known that, in general, Jq = ‖x‖q−2J2, for all x ∈ X, and
Jq(x) is single-valued if X∗ is strictly convex. In what follows, unless otherwise
specified, we always suppose that X is a real Banach space such that Jq(x) is
single-valued. If X is a Hilbert space H, then J2 becomes the identity mapping
of H.

The modulus of smoothness of X is the function ρX : [0,∞)→ [0,∞) defined
by

ρX(t) = sup
{

1
2

(‖x+ y‖+ ‖x− y‖ − 1) : ‖x‖ < t, ‖y‖ < t

}
.

A Banach space X is called uniformly smooth of

lim
t→0

ρX(t)
t

= 0.

X is called q-uniformly smooth if there exists a constant c > 0, such that

ρX(t) ≤ ctq, q > 1.

Note that Jq is single-valued if X is uniformly smooth. In the study of char-
acteristic inequalities in q-uniformly smooth Banach space, Xu [18] proved the
following lemma.
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Lemma 1.1(Xu [18]) Let X be a real uniformly smooth Banach space. Then,
X is q-uniformly smooth if and only if there exists a constant cq > 0 such that
for all x, y ∈ X,

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.

Definition 1.1 Let A,B : X → X be two single-valued mappings, D : X → X∗

be another single-valued operator, and M : X ×X → X∗ be a mapping,
(i)M(A, ·) is said to be α-strong monotone with respect to A if there exists a
positive constant α such that

〈M(Ax, u)−M(Ay, u), x− y〉 ≥ α‖x− y‖2,∀x, y, u ∈ X;

(ii)M(·, B) is said to be β-relaxed monotone with respect to B if there exists
a positive constant β such that

〈M(u,Bx)−M(u,By), x− y〉 ≥ −β‖x− y‖2,∀x, y, u ∈ X;

(iii)M(·, ·) is said to be αβ-symmetric monotone with respect to A and B if
M(A, ·) is α-strongly monotone with respect to A and M(·, B) is β-relaxed
monotone with respect to B with α > β and α = β if and only if x =
y,∀x, y, u ∈ X;
(iv) M(·, ·) is said to be ξ-Lipschitz continuous with respect to the first argu-
ment if there exists a constant ξ > 0 satisfying

‖M(x, u)−M(y, u)‖ ≤ ξ‖x− y‖,∀x, y, u ∈ X;

(v) A is said to be t-Lipschitz continuous if there exists a constant t > 0
satisfying

‖Ax−Ay‖ ≤ t‖x− y‖,∀x, y ∈ X;

(vi) D is said to be r-strongly accretive with respect to M(A,B) if there exists
a constant r > 0 satisfying

〈Dx−Dy, J∗q (M(Ax,Bx)−M(Ay,By))〉 ≥ r‖x− y‖q,∀x, y ∈ X,

where J∗q : X∗ → X∗∗ is the generalized duality mapping on X∗.
In a similar way to (iv), we can define the Lipschitz continuity of the mapping

M with respect to the second argument. Definition 1.2 Let T : X → 2X
∗

be
multivalued mapping. The map T is said to be:
(i) monotone if

〈u∗ − v∗, u− v〉 ≥ 0,∀u, v ∈ X,u∗ ∈ T (u), v∗ ∈ T (v).

(ii) r-strong monotone if there exists a positive constant r such that

〈u∗ − v∗, u− v〉 ≥ r‖u− v‖2,∀u, v ∈ X,u∗ ∈ T (u), v∗ ∈ T (v).
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(iii) maximal monotone if T is monotone and has no a proper monotone exten-
sion in X, i.e., for all u, u0 ∈ X,x ∈ Tu,

〈x− y0, u− u0〉 ≥ 0

implies y0 ∈ Tu0.
When X is a reflexive Banach space, T is maximal monotone if and only if

(J + λT )X = X∗ for all λ > 0.

2. M(·, ·)-monotone operator

In this section, we introduceM(·, ·)-monotone operators and discuss its prop-
erties in Banach spaces.

Definition 2.1 Let A,B : X → X be two single-valued operators, M :
X ×X → X∗ be a mapping and T : X → 2X

∗
be a multi-valued operator. T

is said to be M(·, ·)-monotone with respect to A and B, if T is monotone and
(M(A,B) + λT )(X) = X∗ holds for every λ > 0.

Remark 2.1. If M(A,B) = H, then the above definition reduces to H-
monotonicity, which was studied in [3]. If M(A,B) = J , then the definition of
J -monotonicity is just the maximal monotonicity.

Remark 2.2. Let T be a monotone operator and λ be a positive constant. If
T : X → 2X

∗
is an M(·, ·)-monotone operator with respect to A and B, every

element z ∈ X∗ can be written in exactly one way as M(Ax,Bx) + λu, where
u ∈ T (x).

We use the same technique in [3] to finish the following proof.

Proposition 2.1. Let M be αβ-symmetric monotone with respect to A and
B and T : X → 2X

∗
be an M(·, ·)-monotone operator with respect to A and

B, then T is maximal monotone.

Proof. Since T is monotone, it is sufficient to prove the following property:
inequality 〈x− y, u− v〉 ≥ 0 for (v, y) ∈ Graph(T ) implies

x ∈ Tu. (2.1)

Suppose, by contradiction, that there exists some (u0, x0) /∈ Graph(T ) such
that

〈x0 − y, u0 − v〉 ≥ 0,∀(v, y) ∈ Graph(T ). (2.2)

Since T is M(·, ·)-monotone with respect to A and B, (M(A,B)+λT )(X) = X∗

holds for every λ > 0, there exists (u1, x1) ∈ Graph(T ) such that

M(Au1, Bu1) + λx1 = M(Au0, Bu0) + λx0 ∈ X∗. (2.3)
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It follows from (2.2) and (2.3) that

0 ≤ λ〈x0 − x1, u0 − u1〉
= −〈M(Au0, Bu0)−M(Au1, Bu1), u0 − u1〉
= −〈M(Au0, Bu0)−M(Au1, Bu0), u0 − u1〉

+〈M(Au1, Bu0)−M(Au1, Bu1), u0 − u1〉
≤ −(α− β)‖u0 − u1‖ ≤ 0,

which yields u1 = u0. By (2.3), we have that x1 = x0. Hence (u0, x0) ∈
Graph(T ), which is a contradiction. Therefore (2.1) holds and T is maxi-
mal monotone. This completes the proof. 2

The following example shows that a maximal monotone operator may not be
M(·, ·)-monotone for some A and B.

Example. Let X = S2, where S2 is the space of 2 × 2 symmetric matri-
ces. The inner product is defined as 〈S1, S2〉 = tr(S1S2). Let T = I and
M(Ax,Bx) = E − x for all x ∈ S2, where E is an identity matrix. Then it is
easy to see that I is maximal monotone. For all x ∈ S2, we have that

‖(M(A,B) + I)(x)‖2 = ‖E − x+ x‖2 = 〈E,E〉 = tr[E2] = 2 > 0,

which means that 0 /∈ (M(A,B) + I)(S2) and I is not M(·, ·)-monotone with
respect to A and B.

Theorem 2.1. Let M(A,B) be αβ-symmetric monotone with respect to A
and B and T be an M(·, ·)-monotone operator with respect to A and B. Then
the operator (M(A,B) + λT )−1 is single-valued.

Proof. For any given u ∈ X, let x, y ∈ (M(A,B) + λT )−1(u). It follows that
1
λ (−M(Ax,Bx)+u) ∈ Tx and 1

λ (−M(Ay,By)+u) ∈ Ty. From the mononicity
of M and T, we have

0 ≤ 1
λ
〈−M(Ax,Bx) + u− (−M(Ay,By) + u), x− y〉

= − 1
λ
〈M(Ax,Bx)−M(Ay,By), x− y〉

= − 1
λ
〈M(Ax,Bx)−M(Ay,Bx), x− y〉

−〈M(Ay,Bx)−M(Ay,By), x− y〉

≤ − 1
λ

(α− β)‖x− y‖2 ≤ 0.

Thus, we have x = y and so (M(A,B)+λT )−1 is single-valued. This completes
the proof. 2

Definition 2.2. Let M(A,B) be α-strongly monotone with respect to A, β-
relaxed monotone with respect to B, and α > β. Let T be an M(·, ·)-monotone
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operator with respect to A and B. The resolvent operator RMT,λ : X∗ → X is
defined by RMT,λ = (M(A,B) + λT )−1(u),∀u ∈ X∗.

The following theorem shows that the new resolvent operator has similarly
useful properties as those discuss in [17].

Theorem 2.2. Let M(A,B) be α-strongly monotone with respect to A, β-
relaxed monotone with respect to B, and α > β. Let T be an M(·, ·)-monotone
operator with respect to A and B. The resolvent operator RMT,λ : X∗ → X is

1
α−β -Lipschitz continuous, that is :

‖RMT,λ(u)−RMT,λ(v)‖ ≤ 1
α− β

‖u− v‖,∀u, v ∈ X∗.

Proof. Let u, v be any given points in X∗. It follows from definition 2.2 that
RMT,λ(u) = (M(A,B) + λT )−1(u) and RMT,λ(v) = (M(A,B) + λT )−1(v). This
implies that

1
λ

(u−M(A(RMT,λ(u)), B(RMT,λ(u)) ∈ T (RMT,λ(u))

and
1
λ

(v −M(A(RMT,λ(v)), B(RMT,λ(v)) ∈ T (RMT,λ(v)).

Since T is M(·, ·)-monotone,

1
λ 〈u−M(A(RMT,λ(u)), B(RMT,λ(u))− (v −M(A(RMT,λ(v)), B(RMT,λ(v)),

RMT,λ(u)−RMT,λ(v)〉
= 1

λ 〈u− v − (M(A(RMT,λ(u)), B(RMT,λ(u)))−M(A(RMT,λ(v)), B(RMT,λ(v))),

RMT,λ(u)−RMT,λ(v)〉
= 〈T (RMT,λ(u))− T (RMT,λ(v)), RMT,λ(u)−RMT,λ(v))〉
≥ 0.

It follows that

‖u− v‖ ‖RMT,λ(u)−RMT,λ(v)‖ ≥ 〈u− v,RMT,λ(u)−RMT,λ(v))〉
≥ 〈M(A(RMT,λ(u)), B(RMT,λ(u)))−M(A(RMT,λ(v)), B(RMT,λ(v))),

RMT,λ(u)−RMT,λ(v)〉
≥ (α− β)‖RMT,λ(u)−RMT,λ(v)‖2

and so

‖RMT,λ(u)−RMT,λ(v)‖ ≤ 1
α− β

‖u− v‖.
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3. An algorithm for variational inclusions

In this section, we suggest a proximal point algorithm to solve the variational
inclusion (1.2) and prove the global convergence of the algorithm.

Lemma 3.1 Let M(A,B) be αβ-symmetric monotone with respect to A and B
and T be an M(·, ·)-monotone operator with respect to A and B. Then u ∈ X
is a solution of the variational inclusion (1.2) if and only if u satisfies

u = RMT,λ[M(A(u), B(u))− λG(u)]. (3.1)

proof. The conclusion can be drawn directly from the definition of the resol-
vent operator RMT,λ. 2

Based on (3.1), we can construct the following algorithm.

Algorithm 3.1 For any given x0 ∈ X, compute {xn} ⊂ X as follows:

xn+1 = (1− ρn)xn + ρnyn,

and yn satisfies

‖yn −RMT,λ[M(A(xn), B(xn))− λnG(xn)]‖ ≤ εn.

Theorem 3.1 Let X∗ be a q-uniformly smooth Banach space, A : X → X be
τ -Lipschitz continuous and B be t-Lipschitz continuous, M(A, ·) : X → X∗

be α-strongly monotone with respect to A and M(·, B) : X → X∗ is β-relaxed
monotone with respect to B with α > β. Let M(·, ·) is ξ -Lipschitz continuous
with respect to the first argument and ζ -Lipschitz continuous with respect
to the second argument, T be an M(·, ·)-monotone and G : X → X∗ be γ-
Lipschitz continuous and r-strongly accretive with respect M(·, ·). Let x0 be
given, {εn} ⊂ [0,+∞) satisfy E =

∑∞
n=1 εn < ∞, {λn} ⊂ (λ0,∞), where

λ0 > 0 and
(α− β)q > (ξτ + ζt)q + λqncqγ

q − rqλn,
which implies that

L̃ =
[
1− 1

α− β
q

√
(ξτ + ζt)q + λqncqγq − rqλn

]
×

{
1 + q

1
α− β

q

√
(ξτ + ζt)q + λqncqγq − rqλn

+cq
1

(α− β)q
[(ξτ + ζt)q + λqncqγ

q − rqλn]
}−1

> 0.

If {ρn} ⊆ [Rm, RM ], where 0 < Rm < RM < q−1

√
qL̃
cq

. Then the sequence {xn}
generated by Algorithm 3.1 converges to a solution of the variational inclusion
(1.2).
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Proof. We introduce a new map

Qn ≡ I −RMT,λn
(M(A,B)− λnG).

Clearly, any zero of G+ T is also a zero of Qn. For x, y ∈ X, we know that

〈Qn(x)−Qn(y), Jq(x− y)〉
= 〈x− y−

RMT,λn
(M(A(x), B(x))− λnG(x)) +RMT,λn

(M(A(y), B(y))− λnG(y)),

Jq(x− y)〉
= ‖x− y‖q

−〈RMT,λn
(M(A(x), B(x))− λnG(x))−RMT,λn

(M(A(y), B(y))− λnG(y)),

Jq(x− y)〉

≥ ‖x− y‖q − 1
α− β

‖M(A(x), B(x))−M(A(y), B(y))− λn(G(x)−G(y))‖

×‖Jq(x− y)‖

= ‖x− y‖q − 1
α− β

‖M(A(x), B(x))−M(A(y), B(y))− λn(G(x)−G(y))‖

×‖x− y‖q−1, (3.2)

by the assumptions and Lemma 1.1, we have

‖M(A(x), B(x))−M(A(y), B(y))− λn(G(x)−G(y))‖q

≤ ‖M(A(x), B(x))−M(A(y), B(y))‖q + λqncq‖G(x)−G(y)‖q

−qλn〈G(x)−G(y), J∗q (M(A(x), B(x))−M(A(y), B(y)))〉
≤ (‖M(A(x), B(x))−M(A(y), B(x))‖+ ‖M(A(y), B(x))−M(A(y), B(y))‖)q

+λqncqγ
q‖x− y‖q − rqλn‖x− y‖q

= [(ξτ + ζt)q + λqncqγ
q − rqλn]‖x− y‖q, (3.3)

by (3.3), we have

‖M(A(x), B(x))−M(A(y), B(y))− λn(G(x)−G(y))‖

≤ q

√
(ξτ + ζt)q + λqncqγq − rqλn‖x− y‖. (3.4)

So, we have

〈Qn(x)−Qn(y), Jq(x−y)〉 ≥
[
1− 1

α− β
q

√
(ξτ + ζt)q + λqncqγq − rqλn

]
‖x−y‖q.(3.5)
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By Lemma 1.1

‖Qn(x)−Qn(y)‖q

= ‖x− y −(
RMT,λn

(M(A(x), B(x))− λnG(x))−RMT,λn
(M(A(y), B(y))− λnG(y))

)
‖q

≤ ‖x− y‖q −
q〈RMT,λn

(M(A(x), B(x))− λnG(x))−RMT,λn
(M(A(y), B(y))− λnG(y)), Jq(x− y)〉

+cq‖RMT,λn
(M(A(x), B(x))− λnG(x))−RMT,λn

(M(A(y), B(y))− λnG(y))‖q

≤ ‖x− y‖q +

q‖RMT,λn
(M(A(x), B(x))− λnG(x))−RMT,λn

(M(A(y), B(y))− λnG(y))‖‖x− y‖q−1

+cq
1

(α− β)q
‖M(A(x), B(x))− λnG(x)− (M(A(y), B(y))− λnG(y))‖

≤ ‖x− y‖q + q
1

α− β
‖M(A(x), B(x))− λnG(x)− (M(A(y), B(y))− λnG(y))‖

×‖x− y‖q−1 + cq
1

(α− β)q
[(ξτ + ζt)q + λqncqγ

q − rqλn]‖x− y‖q

≤ ‖x− y‖q + q
1

α− β
q

√
(ξτ + ζt)q + λqncqγq − rqλn‖x− y‖q

+cq
1

(α− β)q
[(ξτ + ζt)q + λqncqγ

q − rqλn]‖x− y‖q

=
{

1 + q
1

α− β
q

√
(ξτ + ζt)q + λqncqγq − rqλn+

cq
1

(α− β)q
[(ξτ + ζt)q + λqncqγ

q − rqλn]
}
‖x− y‖q (3.6)

From (3.2) to (3.6), we have

〈Qn(x)−Qn(y), Jq(x− y)〉

≥
[
1− 1

α− β
q

√
(ξτ + ζt)q + λqncqγq − rqλn

]
×
{

1 + q
1

α− β
q

√
(ξτ + ζt)q + λqncqγq − rqλn+

cq
1

(α− β)q
[(ξτ + ζt)q + λqncqγ

q − rqλn]
}−1

‖Qn(x)−Qn(y)‖q

= L̃‖Qn(x)−Qn(y)‖q.

For all n we denote by

zn+1 = (1− ρn)xn + ρnR
M
T,λn

(M(A(xn), B(xn))− λnG(xn)).
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For every zero x∗ of T +G, we can write:

‖zn+1 − x∗‖q = ‖xn − ρnQn(xn)− x∗‖q

≤ ‖xn − x∗‖q − qρn〈Qn(xn)−Qn(x∗), Jq(xn − x∗)〉+ cqρ
q
n‖Q(xn)‖q

≤ ‖xn − x∗‖q − qρnL̃‖Qn(xn)‖q + cqρ
q
n‖Q(xn)‖q

≤ ‖xn − x∗‖q − (qρnL̃− cqρqn)‖Qn(xn)‖q

≤ ‖xn − x∗‖q − ρn(qL̃− cqρq−1
n )‖Qn(xn)‖q

≤ ‖xn − x∗‖q −Rm(qL̃− cqRq−1
M )‖Qn(xn)‖q

≤ ‖xn − x∗‖q.
Since ‖xn+1 − zn+1‖ ≤ ρnεn, we get that

‖xn+1 − x∗‖ ≤ ‖zn+1 − x∗‖+ ‖xn+1 − zn+1‖
≤ ‖xn − x∗‖+ ρnεn

≤ ‖x0 − x∗‖+
n∑
j=1

ρjεj

≤ ‖x0 − x∗‖+ q−1

√
q

cq
E,

so that the sequence {xn} is bounded. We can also know that

‖xn+1 − x∗‖q = ‖zn+1 − x∗ + xn+1 − zn+1‖q

≤ ‖zn+1 − x∗‖q + q〈xn+1 − zn+1, Jq(zn+1 − x∗)〉+ cq‖xn+1 − zn+1‖q

≤ ‖zn+1 − x∗‖q + q‖xn+1 − zn+1‖‖zn+1 − x∗‖q−1 + cq‖xn+1 − zn+1‖q

≤ ‖xn − x∗‖q + qρnεn(‖x0 − x∗‖+ q−1

√
q

cq
E)q−1 + ρqnε

q
n

−Rm(qL̃− cqRq−1
M )‖Qn(xn)‖q.

We have for every n

‖xn+1 − x∗‖q ≤ ‖x0 − x∗‖q + q(‖x0 − x∗‖+ 2E)q−1
∞∑
n=

ρnεn

+
∞∑
n=1

ρqnε
q
n −Rm(qL̃− cqRq−1

M )
∞∑
n=1

‖Qn(xn)‖q.

Passing n→∞, we deduce that
∑∞
n=1 ‖Qn(xn)‖q <∞. It follows that

lim
n→∞

Qn(xn) = 0.

According to the remark 2.2, for every n there exist a unique pair (un, vn) ∈
Graph(T ), such that

wn = M(A(xn), B(xn))− λnG(xn) = M(A(un), B(un)) + λnvn.
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Then RMT,λn
(M(A(xn), B(xn)) − λnG(xn) = un, so that Qn(xn) → 0 implies

that (xn − un) → 0. Since xn is bounded, it has at lest a limit point. Let x∗

be such a limit point and assume that the sequence {xnk
} converges to x∗. It

follows that {unk
} also converges to x∗ and {vnk

} converges to −G(x∗). For
every (u, v) ∈ Graph(T ), by the monotonicity of T , we have 〈u− un, v− vn〉 ≥
0. Let k → ∞, we get 〈u − x∗, v + G(x∗)〉 ≥ 0. We see that T is M(·, ·)-
monotone due to Proposition 2.1, this implies (x∗,−G(x∗)) ∈ Graph(T ), that
is −G(x∗) ∈ T (x∗). This completes the proof.
2

References

[1] X. P. Ding, Existence and algorithm of solutions for generalized mixed implicit quasi-

variational inequalities, Appl. Math. Comput. 13(1) (2000) 67-80.
[2] N. J. Huang, Y. P. Fang, A new class of generalized variational inclusions involving

maximal η-monotone mappings, Publ. Math. Debrecen 62(1-2) (2003) 83-98.

[3] Y. P. Fang, N. J. Huang, H-monotone operator and resolvent operator technique for
variational inclusions, Appl. Math. Comput. 145 (2003) 795-803.

[4] R. U. Verma, A-monotonicity and its role in nonlinear variational inclusions, J. Optim.

Theory Appl. 129(3) (2006) 457-467.
[5] R. U. Verma, A-monotonicity and applications to nonlinear inclusion problems, J. Appl.

Math. Stochastic Anal. 17(2) (2004) 193-195.

[6] R. U. Verma, General system of A-monotone nonlinear variational inclusion problems
with applications, J. Optim. Theory Appl. 131(1) (2006) 151-157.

[7] Y. P. Fang, N. J. Huang, H-accretive operators and resolvent operator technique for

solving variational inclusions in Banach spaces, Appl. Math. Lett. 17(6) (2004) 647-653.
[8] N. J. Huang, Y. P. Fang, Generalized m-accretive mappings in Banach spaces, J. Sichuan

Univ. 38(4) (2001) 591-592.
[9] J. W. Peng, On a new system of generalized mixed quasi-variational-like inclusions with

(H, η)- accretive operators in real q-uniformly Banach spaces, Nonliner Anal. (2007)

doi:10.1016/j.na.2006.11.054.
[10] H. Y. Lan, Y. J. Cho, R. U. Verma, Nonlinear relaxed cocoercive variational inclusions

involving (A, η)-accretive mappings in Banach spaces, Comput. Math. Appl. 51 (2006)

1529-1538.
[11] T. Pennanen, Local convergence of the proximal point algorithm and multiplier methods

without monotonocity, Math. Oper. Res. 27(1) (2002)170-191.

[12] J. Eckstein, D.P. Bertsekas, On the DouglasCRachford splitting method and the prox-
imal point algorithm for maximal monotone operators, Math. Program. 55 (1992) 293-
318.

[13] R. U. Verma, A hyrid proximal point algorithm based on the (A, η)-maximal monotonoc-
ity framework, Appl. Math. Lett. 21(2008) 142-147.

[14] R.U. Verma, Sensitivity analysis for generalized strongly monotone variational inclu-
sions based on the (A, η)-resolvent operator technique, Appl. Math. Lett. 19 (2006)

1409C1413.

[15] Y.P. Fang, N.J. Huang, H-monotone operators and system of variational inclusions, J.
Math. Anal. Appl. 327(1)(2007) 481-493.

[16] N.J. Huang, A new completely general class of variational inclusions with noncompact
valued mapping, Comput. Math. Appl. 35(10)(1998)9-14.

[17] Juhe Sun, Liwei Zhang, Xiantao Xiao, An aglrithim based on resolvent operators for

solving variational inequalities in Hilbert spaces, Nonlinear Analysis 69 (2008) 3344-

3357.



326 J. CHEN, X. WANG, AND Z. HE

[18] H.K. Xu, Inequalities in Banach space with a pplications, Nonlinear Analysis
16(12)(1991)1127-1138.

Junmin Chen

College of Mathematics and Computer, Hebei University,

Baoding, 071002 P.R.China
E-mail address: chenjunm01@163.com

Xian Wang
College of Mathematics and Computer, Hebei University,

Baoding, 071002 P.R.China

Zhen He

College of Mathematics and Computer, Hebei University,

Baoding, 071002 P.R.China


