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GENERAL FRAMEWORK FOR PROXIMAL POINT

ALGORITHMS ON (A, η)-MAXIMAL MONOTONICITY

FOR NONLINEAR VARIATIONAL INCLUSIONS

Ram U. Verma

Abstract. General framework for proximal point algorithms based on
the notion of (A, η)-maximal monotonicity (also referred to as (A, η)-
monotonicity in literature) is developed. Linear convergence analysis for

this class of algorithms to the context of solving a general class of nonlin-
ear variational inclusion problems is successfully achieved along with some
results on the generalized resolvent corresponding to (A, η)-monotonicity.
The obtained results generalize and unify a wide range of investigations

readily available in literature.

1. Introduction

Let X be a real Hilbert space with the norm ∥·∥ and the inner product ⟨·, ·⟩.
We consider a class inclusion problems of the form: find a solution to

(1) 0 ∈ M(x),

where M : X → 2X is a set-valued mapping on X.
Motivated by the algorithmic advances [1, 2, 3, 7, 10], we develop a hy-

brid relaxed proximal point algorithm considered by Eckstein and Bertsekas
[2] based on the notions of A-maximal monotonicity [10] and (A, η)-maximal
monotonicities [11] for solving general inclusion problems. These new notions
generalize the general class of maximal monotone set-valued mappings, includ-
ing the notion of H-maximal monotonicity introduced by Fang and Huang [3]
in a Hilbert space setting. This greatly impacts on a general class of problems
of variational character, including minimization or maximization (whether con-
straint or not) of functions, variational problems, and minimax problems, that
can be unified into the form (1). Recently, the author [11] introduced and stud-
ied the notion of (A, η)-maximal monotonicity to the context of approximating
the solution of an inclusion problem based on the generalized resolvent opera-
tor technique. The generalized resolvent operator technique can also be applied
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to other problems, such as equilibria problems in economics, management sci-
ences, optimization and control theory, operations research, and mathematical
programming. For more details on the resolvent operator technique and its
applications, we refer the reader [1-17].

2. (A, η)-maximal monotonicity

In this section we discuss some results based on basic properties of (A, η)-
maximal monotonicity and its variant forms. LetM : X → 2X be a multivalued
mapping on X. We shall denote both the map M and its graph by M, that is,
the set {(x, y) : y ∈ M(x)}. This is equivalent to stating that a mapping is any
subset M of X × X, and M(x) = {y : (x, y) ∈ M}. If M is single-valued, we
shall still use M(x) to represent the unique y such that (x, y) ∈ M rather than
the singleton set {y}. This interpretation shall much depend on the context.
The domain of a map M is defined (as its projection onto the first argument)
by

D(M) = {x ∈ X : ∃ y ∈ X : (x, y) ∈ M} = {x ∈ X : M(x) ̸= ∅}.
D(M) = X shall denote the full domain of M, and the range of M is defined
by

R(M) = {y ∈ X : ∃x ∈ X : (x, y) ∈ M}.
The inverse M−1 of M is {(y, x) : (x, y) ∈ M}. For a real number ρ and a
mapping M, let ρM = {x, ρy) : (x, y) ∈ M}. If L and M are any mappings, we
define

L+M = {(x, y + z) : (x, y) ∈ L, (x, z) ∈ M}.

Definition 2.1. Let M : X → 2X be a multivalued mapping on X. The map
M is said to be:

(i) (r)-strongly monotone if there exists a positive constant r such that

⟨u∗ − v∗, u− v⟩ ≥ r∥u− v∥2 ∀ (u, u∗), (v, v∗) ∈ M.

(ii) (m)-relaxed monotone if there exists a positive constant m such that

⟨u∗ − v∗, u− v⟩ ≥ (−m)∥u− v∥2 ∀ (u, u∗), (v, v∗) ∈ M.

Definition 2.2. Let M : X → 2X be a multivalued mapping on X, and let
η : X ×X → X be another mapping. The map M is said to be:

(i) (r, η)-strongly monotone if there exists a positive constant r such that

⟨u∗ − v∗, η(u, v)⟩ ≥ r∥u− v∥2 ∀ (u, u∗), (v, v∗) ∈ M.

(ii) (1, η)-strongly monotone if

⟨u∗ − v∗, η(u, v)⟩ ≥ ∥u− v∥2 ∀ (u, u∗), (v, v∗) ∈ M.

(iii) η is said to be (τ)-Lipschitz continuous if there is a positive constant τ
such that

∥η(u, v)∥ ≤ τ∥u− v∥.
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Definition 2.3 ([10]). Let A : X → X be (r)-strongly monotone. The map
M : X → 2X is said to be A-maximal monotone if

(i) M is (m)-relaxed monotone,
(ii) R(A+ ρM) = X for ρ > 0.

Definition 2.4. Let A : X → X be (r, η)-strongly monotone. The map
M : X → 2X is said to be (A, η)-maximal monotone if

(i) M is (m, η)-relaxed monotone,
(ii) R(A+ ρM) = X for ρ > 0.

Definition 2.5. Let A : X → X be an (r, η)-strongly monotone mapping
and let M : X → 2X be an (A, η)-maximal monotone mapping. Then the

generalized resolvent operator JM,η
ρ,A : X → X is defined by

JM,η
ρ,A (u) = (A+ ρM)−1(u) for r − ρm > 0.

Proposition 2.1. Let A : X → X be an (r, η)-strongly monotone mapping
and let M : X → 2X be an (A, η)-monotone mapping. Then the operator
(A+ ρM)−1 is single-valued for r − ρm > 0.

Proof. Suppose that for some z ∈ X, there are x, y ∈ (A+ ρM)−1(z). Then we
have

−A(x) + z ∈ ρM(x) and −A(y) + z ∈ ρM(y).

Since M is (A, η)-monotone and A is (r, η)-strongly monotone, it follows that

−⟨A(x)−A(y), η(x, y)⟩ ≥ −ρm∥x− y∥2

⇒ −ρm∥x− y∥2 ≤ −⟨A(x)−A(y), η(x, y)⟩ ≤ −r∥x− y∥2

⇒ (r − ρm)∥x− y∥2 ≤ 0

⇒ x = y for (r − ρm) > 0. □

3. Hybrid proximal point algorithms

This section deals with a hybrid proximal point algorithm to the relaxed ver-
sion of the proximal point algorithm [2] and its application to approximation
solvability of the inclusion problem (1) based on the (A, η)-maximal monotonic-
ity.

Lemma 3.1 ([11]). Let X be a real Hilbert space, let A : X → X be (r, η)-
strongly monotone, let M : X → 2X be (A, η)-maximal monotone, and let
η : X × X → X be (τ)-Lipschitz continuous. Then the generalized resolvent
operator associated with M and defined by

JM,η
ρ,A (u) = (A+ ρM)−1(u)∀u ∈ X,

is ( τ
r−ρm )-Lipschitz continuous.

Furthermore, we have

⟨JM,η
ρ,A (u)− JM,η

ρ,A (v), u− v⟩ ≤ τ

r − ρm
∥u− v∥2
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for r − ρm > 0.

Theorem 3.1. Let X be a real Hilbert space, let A : X → X be (r, η)-strongly
monotone, and let M : X → 2X be (A, η)-maximal monotone. Then the fol-
lowing statements are mutually equivalent:

(i) An element u ∈ X is a solution to (1).
(ii) For an u ∈ X, we have

u = JM,η
ρ,A (A(u)),

where

JM,η
ρ,A (u) = (A+ ρM)−1(u) for r − ρm > 0.

Theorem 3.2 ([3]). Let X be a real Hilbert space, let H : X → X be (r, η)-
strongly monotone, and let M : X → 2X be (H, η)-maximal monotone. Then
the following statements are mutually equivalent:

(i) An element u ∈ X is a solution to (1).
(ii) For an u ∈ X, we have

u = JM,η
ρ,H (H (u)),

where

JM,η
ρ,H (u) = (H + ρM)−1(u).

In the following theorem, we apply the hybrid proximal point algorithm to
approximate the solution of (1), and as a result, we end up showing linear
convergence.

Theorem 3.3. Let X be a real Hilbert space, let A : X → X be (r, η)-strongly
monotone, and let M : X → 2X be (A, η)-maximal monotone. Let η : X×X →
X be (τ)-Lipschitz continuous. Suppose further that AoJM,η

ρk,A
is (λ)-cocoercive

for λ > 1, that is, for all u, v ∈ X,

⟨A(u)−A(v), A(JM,η
ρk,A

(A(u)))−A(JM,η
ρk,A

(A(v)))⟩

≥ λ∥A(JM,η
ρk,A

(A(u)))−A(JM,η
ρk,A

(A(v)))∥2.(2)

For an arbitrarily chosen initial point x0, let the sequence {xk} be generated
by an iterative algorithm of the form

(3) A(xk+1) = (1− αk)A(xk) + αky
k ∀ k ≥ 0,

and yk satisfies

∥yk −A(JM,η
ρk,A

(A(xk)))∥ ≤ δk∥yk −A(xk)∥,

where JM,η
ρk,A

= (A+ ρkM)−1 for r − ρkm > 0, and

{δk}, {αk}, {ρk} ⊆ [0,∞)

are scalar sequences such that
∑∞

k=0 δk < ∞, δk → 0, α = lim supk→∞ αk,
ρk ↑ ρ ≤ ∞, and αk < 1.
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Then the sequence {xk} converges linearly to a solution of (1) with convergence
rate

(4)

√
[1− 2α{1− (1− α)

1

λ
− 1

2
α(

1

λ2
)− 1

2
α}] < 1

for λ > 1.

Proof. Suppose that x∗ is a zero of M. From Theorem 3.1, it follows that any

solution to (1) is a fixed point of JM,η
ρk,A

oA. For all k ≥ 0, we express

A(zk+1) = (1− αk)A(x
k) + αkA(JM,η

ρk,A
(A(xk))).

Next, we find the estimate using (2) and its implications that

∥A(zk+1)−A(x∗)∥2

= ∥(1− αk)A(x
k) + αkA(J

M,η
ρk,A

(A(xk)))

− [(1− αk)A(x
∗) + αkA(J

M,η
ρk,A

(A(x∗)))]∥2

= ∥(1− αk)(A(xk)−A(x∗)) + αk(A(J
M,η
ρk,A

(A(xk)))−A(JM,η
ρk,A

(A(x∗))))∥2

= (1− αk)
2∥A(xk)−A(x∗)∥2

+ 2αk(1− αk)⟨A(xk)−A(x∗), A(JM,η
ρk,A

(A(xk)))−A(JM,η
ρk,A

(A(x∗)))⟩

+ α2
k∥A(J

M,η
ρk,A

(A(xk)))−A(JM,η
ρk,A

(A(x∗)))∥2

≤ (1− αk)
2∥A(xk)−A(x∗)∥2 + 2αk(1− αk)

1

λ
∥A(xk)−A(x∗)∥2

+ α2
k∥A(J

M,η
ρk,A

(A(xk)))−A(JM,η
ρk,A

(A(x∗)))∥2

≤ (1− αk)
2∥A(xk)−A(x∗)∥2 + 2αk(1− αk)

1

λ
∥A(xk)−A(x∗)∥2

+ α2
k(

1

λ
)2∥A(xk)−A(x∗)∥2

= [1− 2αk{1− (1− αk)
1

λ
− 1

2
αk(

1

λ2
)− 1

2
αk}]∥A(xk)−A(x∗)∥2.

It follows that

∥A(zk+1)−A(x∗)∥ ≤ θk∥A(xk)−A(x∗)∥,
where

θk =

√
[1− 2αk{1− (1− αk)

1

λ
− 1

2
αk(

1

λ2
)− 1

2
αk}].

Since A(xk+1) = (1 − αk)A(x
k) + αky

k, we have A(xk+1) − A(xk) = αk(y
k −

A(xk)). It follows that

∥A(xk+1)−A(zk+1)∥

= ∥(1− αk)A(x
k) + αky

k − [(1− αk)A(x
k) + αkA(J

M,η
ρk,A

(A(xk)))]∥

= ∥αk(y
k −A(JM,η

ρ,A (A(xk))))∥
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≤ αkδk∥yk −A(xk)∥.
Next, we find the estimate

∥A(xk+1)−A(x∗)∥(5)

≤ ∥A(zk+1)−A(x∗)∥+ ∥A(xk+1)−A(zk+1)∥

≤ ∥A(zk+1)−A(x∗)∥+ αkδk∥yk −A(xk)∥

≤ ∥A(zk+1)−A(x∗)∥+ δk∥A(xk+1)−A(xk)∥

≤ ∥A(zk+1)−A(x∗)∥+ δk∥A(xk+1)−A(x∗)∥+ δk∥A(xk)−A(x∗)∥

≤ θk∥A(xk)−A(x∗)∥+ δk∥A(xk+1)−A(x∗)∥+ δk∥A(xk)−A(x∗)∥.
This implies that

(6) ∥A(xk+1)−A(x∗)∥ ≤ θk + δk
1− δk

∥A(xk)−A(x∗)∥,

where

lim sup
θk + δk
1− δk

= lim sup θk

=

√
[1− 2α{1− (1− α)

1

λ
− 1

2
α(

1

λ2
)− 1

2
α}] < 1.

It follows from (6) that ∥A(xk)−A(x∗)∥ → 0 as k → ∞. On the other hand,
A is (r, η)-strongly monotone, and hence,

∥A(xk)−A(x∗)∥ ≥ r

τ
∥xk − x∗∥.

Hence, we have
r

τ
∥xk − x∗∥ ≤ ∥A(xk)−A(x∗)∥ → 0,

and this concludes the proof. □

Theorem 3.4. Let X be a real Hilbert space, let H : X → X be (r, η)-strongly
monotone, and let M : X → 2X be (H, η)-maximal monotone. Let η : X×X →
X be (τ)-Lipschitz continuous. Suppose further that HoJM,η

ρk,H
is (λ)-cocoercive

for λ > 1, that is, for all u, v ∈ X,

⟨H(u)−H(v),H(JM,η
ρk,H

(H(u)))−H(JM,η
ρk,H

(H(v)))⟩

≥ λ∥H(JM,η
ρk,H

(H(u)))−H(JM,η
ρk,H

(H(v)))∥2.(7)

For an arbitrarily chosen initial point x0, let the sequence {xk} be generated
by another iterative algorithm

(8) H(xk+1) = (1− αk)H(xk) + αky
k ∀ k ≥ 0,

and yk satisfies

∥yk −H(JM,η
ρk,H

(H(xk)))∥ ≤ δk∥yk −H(xk)∥,
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where JM,η
ρk,H

= (H + ρkM)−1, and

{δk}, {αk}, {ρk} ⊆ [0,∞)

are scalar sequences such that
∑∞

k=0 δk < ∞, δk → 0, α = lim supk→∞ αk,
ρk ↑ ρ ≤ ∞, αk < 1 and λ > 1.
Then the sequence {xk} converges linearly to a solution of (1) for λ > 1.

Proof. The proof is similar to that of Theorem 3.3. Suppose that x∗ is a zero
of M. From Theorem 3.2, it follows that any solution to (1) is a fixed point of

JM,η
ρk,H

oH. For all k ≥ 0, we express

H(zk+1) = (1− αk)H(xk) + αkH(JM,η
ρk,H

(H(xk))).

Next, we find the estimate using (7) and its variants that

∥H(zk+1)−H(x∗)∥2

= ∥(1− αk)H(xk) + αkH(JM,η
ρk,H

(H(xk)))

− [(1− αk)H(x∗) + αkH(JM,η
ρk,H

(H(x∗)))]∥2

= ∥(1− αk)(H(xk)−H(x∗)) + αk(H(JM,η
ρk,H

(H(xk)))−H(JM,η
ρk,H

(H(x∗))))∥2

= (1− αk)
2∥H(xk)−H(x∗)∥2

+ 2αk(1− αk)⟨H(xk)−H(x∗),H(JM,η
ρk,H

(H(xk)))−H(JM,η
ρk,H

(A(x∗)))⟩

+ α2
k∥H(JM,η

ρk,H
(H(xk)))−H(JM,η

ρk,H
(H(x∗)))∥2

≤ (1− αk)
2∥H(xk)−H(x∗)∥2 + 2αk(1− αk)

1

λ
∥H(xk)−H(x∗)∥2

+ α2
k∥H(JM,η

ρk,H
(H(xk)))−H(JM,η

ρk,H
(H(x∗)))∥2

≤ (1− αk)
2∥H(xk)−H(x∗)∥2 + 2αk(1− αk)

1

λ
∥H(xk)−H(x∗)∥2

+ α2
k(

1

λ
)2∥H(xk)−H(x∗)∥2

= [1− 2αk{1− (1− αk)
1

λ
− 1

2
αk(

1

λ2
)− 1

2
αk}]∥H(xk)−H(x∗)∥2.

It follows that

∥H(zk+1)−H(x∗)∥ ≤ θk∥H(xk)−H(x∗)∥,
where

θk =

√
[1− 2αk{1− (1− αk)

1

λ
− 1

2
αk(

1

λ2
)− 1

2
αk}].

Since H(xk+1) = (1−αk)H(xk) +αky
k, we have H(xk+1)−H(xk) = αk(y

k −
H(xk)). It follows that

∥H(xk+1)−H(zk+1)∥

= ∥(1− αk)H(xk) + αky
k − [(1− αk)H(xk) + αkH(JM,η

ρk,H
(H(xk)))]∥
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= ∥αk(y
k −H(JM,η

ρ,H (H(xk))))∥

≤ αkδk∥yk −H(xk)∥.

Next, we find the estimate

∥H(xk+1)−H(x∗)∥(9)

≤ ∥H(zk+1)−H(x∗)∥+ ∥H(xk+1)−H(zk+1)∥

≤ ∥H(zk+1)−H(x∗)∥+ αkδk∥yk −H(xk)∥

≤ ∥H(zk+1)−H(x∗)∥+ δk∥H(xk+1)−H(xk)∥

≤ ∥H(zk+1)−H(x∗)∥+ δk∥H(xk+1)−H(x∗)∥+ δk∥H(xk)−H(x∗)∥

≤ θk∥H(xk)−H(x∗)∥+ δk∥H(xk+1)−H(x∗)∥+ δk∥H(xk)−H(x∗)∥.

This implies that

∥H(xk+1)−H(x∗)∥ ≤ θk + δk
1− δk

∥H(xk)−H(x∗)∥,

where

lim sup
θk + δk
1− δk

= lim sup θk

=

√
[1− 2α{1− (1− α)

1

λ
− 1

2
α(

1

λ2
)− 1

2
α}] < 1.

Thus, ∥H(xk)−H(x∗)∥ → 0. Since H is (r, η)-strongly monotone, it implies

∥H(xk)−H(x∗)∥ ≥ r

τ
∥xk − x∗∥,

we have
r

τ
∥xk − x∗∥ ≤ ∥H(xk)−H(x∗)∥ → 0. □

Concluding Remark. We observe that because of the linear convergence
concerns, the applications of the most of the constants such as ρ, r, m and
τ are pretty much limited during the proofs except for r − ρm > 0 applied
in Proposition 2.1, and r

τ is applied to the final stages of the proof, though
it is crucial achieving linear convergence in a general setting. A reasonably

dominant role is played by the (λ)-cocoercivity of the composition AoJM,η
ρk,A

for
λ > 1, while Proposition 2.1 is turned out to be quite significant to the single-
valuedness of the generalized resolvent. Moreover, the convergence analysis
is consistent with the theory of classical resolvents in the sense that linear
convergence is unachievable for a general setting of classical resolvent when A/
H is just the identity mapping.
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