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ABSTRACT. In view of ideas for semigroups, fractional calculus, resolvent operator and Ba-
nach contraction principle, this manuscript is generally included with existence and control-
lability (EaC) results for fractional neutral integro-differential systems (FNIDS) with state-
dependent delay (SDD) in Banach spaces. Finally, an examples are also provided to illustrate
the theoretical results.

1. INTRODUCTION

The notion of fractional differential equation (FDE) is increasing as a basic scope of re-
search because of the reality it is better in problems in connection with relating hypothesis of
conventional differential equations. Fractional order models are often observed to be more ad-
equate than integer order models in some real world problems as fractional derivatives supply
an extraordinary application for the depiction of memory and hereditary properties of various
materials and procedures. These days, it has been shown that the differential models includ-
ing derivatives of fractional order occur in lots of engineering and scientific professions as the
mathematical modeling of systems and strategies in numerous domains, for case in point, basic
sciences, navigation, feed back amplifiers, and neuron modelling so on. For crucial confirma-
tions about fractional frameworks, one can make reference to the treatises [1, 2], and the papers
[3–9], and the references cited therein. FDE with delay characteristics happen in a number of
domains such as medical and physical with SDD or non-constant delay. Presently, existence
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and controllability results of mild solutions for such problems turned quite interesting and nu-
merous researchers working on it. Just lately, number of papers have been released on the
fractional order problems with SDD, see for instance [10–19].

On the other side, the thought of controllability has accepted a central part all through the
historical backdrop of cutting edge control theory. This is the qualitative property of control
frameworks and is of specific significance in control theory. A lot of dynamical systems are
such that the control does not affect the complete state of the dynamical system yet just a part
of it. Then again, frequently in real industrial procedures it is conceivable to notice just a spe-
cific piece of the complete state of the dynamical framework. Along these lines, it is essential
to figure out if or not control of the complete state of the dynamical framework is conceiv-
able. In this way, here the thought of complete controllability and approximate controllability
exists. Generally discussing, controllability usually indicates that it is conceivable to steer dy-
namical framework from a arbitrary beginning state to the coveted last state utilizing the set of
acceptable controls.

The existence, controllability and other qualitative and quantitative attributes of FDE are the
most advancing area of pursuit, in particular, see [20–29]. These days, Santos et al. [16, 23, 24]
reviewed the existence of solutions for FIDE with unbounded or SDD delay in Banach spaces.
Shu et al. [25] examined the existence outcomes for FDE with nonlocal conditions of order
α ∈ (1, 2). In [26, 27], the writers present sufficient circumstances for the existence and
approximate controllability of fractional order neutral differential and stochastic differential
system with infinite delay. Kexue et al. [28] analyzed the controllability of nonlocal FDE
of order α ∈ (1, 2]. Sakthivel et al. [29] acknowledged the approximate controllability of
fractional dynamical system by making use of appropriate fixed point theorem. Lately, in
[17–19], the authors outlined the approximate controllability results for FNIDS with SDD by
applying the acceptable fixed point theorem. However, EaC results for FNIDS with SDD in
Bh phase space adages have not yet been completely examined.

Inspired by the effort of the previously stated papers [14–16], the principle inspiration driv-
ing this manuscript is to research the EaC of mild solutions for FNIDS with SDD of the models

Dα
t

[
x(t) + G

(
t, xϱ(t,xt),

∫ t

0
e1(t, s, xϱ(s,xs))ds

)]
= A x(t) +

∫ t

0
B(t− s)x(s)ds

+ F

(
t, xϱ(t,xt),

∫ t

0
e2(t, s, xϱ(s,xs))ds

)
+ H

(
t, xϱ(t,xt),

∫ t

0
e3(t, s, xϱ(s,xs))ds

)
, t ∈ I = [0, T ], (1.1)

x0 = ς(t) ∈ Bh, x′(0) = 0, t ∈ (−∞, 0], (1.2)

and the corresponding controllability structure

Dα
t

[
x(t) + G

(
t, xϱ(t,xt),

∫ t

0
e1(t, s, xϱ(s,xs))ds

)]
= A x(t) +

∫ t

0
B(t− s)x(s)ds
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+ F

(
t, xϱ(t,xt),

∫ t

0
e2(t, s, xϱ(s,xs))ds

)
+ H

(
t, xϱ(t,xt),

∫ t

0
e3(t, s, xϱ(s,xs))ds

)
+ (Cu)(t), t ∈ I = [0, T ], (1.3)

x0 = ς(t) ∈ Bh, x′(0) = 0, t ∈ (−∞, 0], (1.4)

where the unknown x(·) needs values in the Banach space X having norm ∥·∥,I = [0, T ] is an
operational interval, Dα

t is the Caputo fractional derivative of order α ∈ (1, 2),A , (B(t))t≥0

are closed linear operators described on a regular domain which is dense in (X, ∥ · ∥) and
Dα

t σ(t) symbolize the Caputo derivative of α > 0 characterized by

Dα
t σ(t) :=

∫ t

0
µ̃n−α(t− s)

dn

dsn
σ(s)ds,

where n ≥ α and µ̃β(t) := tβ−1

Γ(β) , t > 0, β ≥ 0. Further, G ,F ,H : I × Bh × X → X, ei :
D×Bh → X, i = 1, 2, 3; D = {(t, s) ∈ I ×I : 0 ≤ s ≤ t ≤ T}, ϱ : I ×Bh → (−∞, T ]
are apposite functions, C is a bounded linear operator from a Banach spaceU into X; the control
function u(·) ∈ L2(I , U), a Banach space of admissible control functions, and Bh is a phase
space characterized in Preliminaries.

For almost any continuous function x characterized on (−∞, T ] and any t ≥ 0, we designate
by xt the part of Bh characterized by xt(θ) = x(t + θ) for θ ≤ 0. Now xt(·) speaks to the
historical backdrop of the state from every θ ∈ (−∞, 0] likely the current time t.

We push ahead as takes after. Section 2 is focused on call to mind of some crucial perspec-
tives that will be utilized in this work to accomplish our primary results. In Section 3 and 4,
we declare and present the EaC results about by proposes of Banach fixed point theorem. In
Section 5, as a last point, an appropriate cases are equipped to replicate the efficiency of the
conceptual idea.

To the best of our insight, there is no work gave an account of the EaC results for FNIDS
with SDD, which is communicated in the structures (1.1)–(1.2) and (1.3)–(1.4). To pack this
gap, in this manuscript, we contemplate this fascinating model.

2. PRELIMINARIES

In this section, we present some primary components which are required to confirm the
principal outcomes. Let L (X) symbolizes the Banach space of all bounded linear operators
from X into X endowed with the uniform operator topology, having its norm recognized as
∥ ·∥L (X). Let C(I ,X) symbolize the space of all continuous functions from I into X, having
its norm recognized as ∥ · ∥C(I ,X). Moreover, Br(x,X) symbolizes the closed ball in X with
the middle at x and the distance r. It needs to be outlined that, once the delay is infinite, then
we should talk about the theoretical phase space Bh in a beneficial way. In this manuscript, we
deliberate phase spaces Bh which are same as described in [30]. So, we bypass the details.
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We expect that the phase space (Bh, ∥ · ∥Bh
) is a semi-normed linear space of functions

mapping (−∞, 0] into X, and fulfilling the subsequent elementary adages as a result of Hale
and Kato ( see case in point in [31, 32]).

If x : (−∞, T ] → X, T > 0, is continuous on I and x0 ∈ Bh, then for every t ∈ I the
accompanying conditions hold:

(P1) xt is in Bh;
(P2) ∥x(t)∥X ≤ H∥xt∥Bh

;
(P3) ∥xt∥Bh

≤ D1(t) sup{∥x(s)∥X : 0 ≤ s ≤ t} + D2(t)∥x0∥Bh
, where H > 0 is a

constant and D1(·) : [0,+∞) → [0,+∞) is continuous, D2(·) : [0,+∞) → [0,+∞)
is locally bounded, and D1,D2 are independent of x(·).

(P4) The function t→ ςt is well described and continuous from the set

R(ϱ−) = {ϱ(s, ς) : (s, ς) ∈ [0, T ]× Bh},

into Bh and there is a continuous and bounded function J ς : R(ϱ−) → (0,∞) to
ensure that ∥ςt∥Bh

≤ J ς(t)∥ς∥Bh
for every t ∈ R(ϱ−).

Recognize the space

BT = {x : (−∞, T ] → X : x|I is continuous and x0 ∈ Bh} ,
where x|I is the constraint of x to the real compact interval on I . The function ∥ · ∥BT

to be a seminorm in BT , it is described by

∥x∥BT
= ∥ς∥Bh

+ sup{∥x(s)∥X : s ∈ [0, T ]}, x ∈ BT .

Lemma 2.1. [33, Lemma 2.1] Let x : (−∞, T ] → X be a function in a way that x0 = ς, and
if (P4) hold, then

∥xs∥Bh
≤ (D∗

2 + J ς)∥ς∥Bh
+ D∗

1 sup{∥x(θ)∥X : θ ∈ [0,max{0, s}]}, s ∈ R(ϱ−) ∪ I ,

where J ς = sup
t∈R(ϱ−)

J ς(t), D∗
1 = sup

s∈[0,T ]
D1(s), D∗

2 = sup
s∈[0,T ]

D2(s).

To be able to acquire our outcomes, we believe that the subsequent FIDS

Dα
t x(t) = A x(t) +

∫ t

0
B(t− s)x(s)ds, (2.1)

x(0) = ς ∈ X, x′(0) = 0, (2.2)

has an associated α-resolvent operator of bounded linear operators (Rα(t))t≥0 on X.

Definition 2.1. [23, Definition 2.1] A one parameter family of bounded linear operators (Rα(t))t≥0

on X is called a α-resolvent operator of (2.1)-(2.2) if the subsequent conditions are fulfilled.
(a) The function Rα(·) : [0,∞) → L (X) is strongly continuous and Rα(0)x = x for all

x ∈ X and α ∈ (1, 2).
(b) For x ∈ D(A ), Rα(·)x ∈ C([0,∞), [D(A )])

∩
C1((0,∞),X), and

Dα
t Rα(t)x = A Rα(t)x+

∫ t

0
B(t− s)Rα(s)xds, (2.3)
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Dα
t Rα(t)x = Rα(t)A x+

∫ t

0
Rα(t− s)B(s)xds, (2.4)

for every t ≥ 0.

The existence of a α-resolvent operator for the model (2.1)-(2.2) was analyzed in [20]. To
be able to research our model, we need to consider the conditions (P1)− (P3) which are same
as stated in [23], consequently we preclude it. In view of the conditions (P1) − (P3), in the
sequel, for r > 0 and θ ∈ (π2 , ϑ),

Σr,θ = {λ ∈ C : λ ̸= 0, |λ| > r, |arg(λ)| < θ},

for Γr,θ,Γ
i
r,θ, i = 1, 2, 3, are the paths Γ1

r,θ = {teiθ : t ≥ r},Γ2
r,θ = {reiξ : −θ ≤ ξ ≤

θ},Γ3
r,θ = {te−iθ : t ≥ r}, and Γr,θ =

3∪
i=1

Γi
r,θ oriented counterclockwise. Furthermore,

ρα(Gα) are the sets

ρα(Gα) = {λ ∈ C : Gα(λ) := λα−1(λαI − A − B̂(λ))−1 ∈ L (X)}.

Presently, we determine the operator family (Rα(t))t≥0 by

Rα(t) =


1

2πi

∫
Γr,θ

eλtGα(λ)dλ, t > 0,

I, t = 0.

(2.5)

Now, we are in a position to present some conventional outcomes from current works.

Theorem 2.1 ([20, Theorem 2.1] ). Assume that conditions (P1)–(P3) are fulfilled. Then there
exists a unique α-resolvent operator for problem (2.1)-(2.2).

Theorem 2.2 ([20, Lemma 2.5] ). The function Rα : [0,∞) → L (X) is strongly continuous
and Rα : (0,∞) → L (X) is uniformly continuous.

Hereafter, we expect that the conditions (P1)− (P3) are fulfilled. Further, we need to talk
about the mild solution for the model (1.1)-(1.2). For this intent, it is necessary to discuss the
subsequent non-homogeneous model

Dα
t x(t) = A x(t) +

∫ t

0
B(t− s)x(s)ds+ F (t), t ∈ I , (2.6)

x(0) = x0, x′(0) = 0, (2.7)

where α ∈ (1, 2) and F ∈ L1(I ,X). In the follow up, Rα(·) is the operator function charac-
terized by (2.5). Now, we start by presenting the subsequent concept of classical solution.

Definition 2.2 ([23, Definition 2.5]). A function x : I → X, 0 < T , is called a classical
solution of (2.6)-(2.7) on I if x ∈ C(I , [D(A )])∩C(I ,X), µ̃n−α∗x ∈ C1(I ,X), n = 1, 2,
the condition (2.7) holds and the equation (2.6) is verified on I .
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Definition 2.3 ([23, Definition 2.6]). Let α ∈ (1, 2), we describe the family (Sα(t))t≥0 by

Sα(t)x :=

∫ t

0
µ̃α−1(t− s)Rα(s)xds,

for each t ≥ 0.

Now, just as before, we need to present some additional conventional outcomes from [20].

Lemma 2.2 ([20, Lemma 3.9]). If the function Rα(·) is exponentially bounded in L (X), then
Sα(·) is exponentially bounded in L (X).

Lemma 2.3 ([20, Lemma 3.10]). If the function Rα(·) is exponentially bounded in L ([D(A )]),
then Sα(·) is exponentially bounded in L ([D(A )]).

Theorem 2.3 ([20, Theorem 3.2] ). Let z ∈ D(A ). Assume that F ∈ C(I ,X) and x(·) is a
classical solution of (2.6)-(2.7) on I . Then

x(t) = Rα(t)z +

∫ t

0
Sα(t− s)F (s) ds, t ∈ I . (2.8)

It is obvious from the earlier definition that Rα(·)z is a solution of problem (2.1)-(2.2) on
(0,∞) for z ∈ D(A ).

Definition 2.4 ([23, Definition 2.10]). Let F ∈ L1(I ,X). A function x ∈ C(I ,X) is called
a mild solution of (2.6)-(2.7) if

x(t) = Rα(t)z +

∫ t

0
Sα(t− s)F (s) ds, t ∈ I .

Theorem 2.4 ([20, Theorem 3.3] ). Let z ∈ D(A ) and F ∈ C(I ,X). If F ∈ L1(I , [D(A )])
then the mild solution of (2.6)-(2.7) is a classical solution.

Theorem 2.5 ([20, Theorem 3.4]). Let z ∈ D(A ) and F ∈ C(I ,X). If F ∈ W 1,1(I ,X),
then the mild solution of (2.6)-(2.7) is a classical solution.

In the subsequent result, we signify by (−A )ϑ the fractional power of the operator −A ,
(see [34] for details).

Lemma 2.4 ([23, Lemma 3.1]). Suppose that the conditions (P1)− (P3) are satisfied. Let
α ∈ (1, 2) and ϑ ∈ (0, 1) such that αϑ ∈ (0, 1), then there exists positive number C such that

∥(−A )ϑRα(t)∥ ≤ Certt−αϑ, (2.9)

∥(−A )ϑSα(t)∥ ≤ Certtα(1−ϑ)−1, (2.10)

for all t > 0.

Remark 2.1. The verifications of the above results are excessively standard, subsequently we
overlook here. For additional data about this idea, we propose the peruser to allude [20, 23].



EXISTENCE AND CONTROLLABILITY RESULTS 57

Definition 2.5. Let xT (ς;u) be the state value of the model (1.3)-(1.4) at terminal time T
corresponding to the control u and the initial value ς ∈ Bh. Present the set R(T, ς) =
{xT (ς;u)(0) : u(·) ∈ L2(I , U)}, which is known as the reachable set of model (1.3)-(1.4) at
terminal time T .

Definition 2.6. The model (1.3)-(1.4) is said to be exactly controllable on I if R(T, ς) = X.

Assume that the fractional differential control model

Dαx(t) = A x(t) + (Cu)(t), t ∈ I , (2.11)
x0 = ς ∈ Bh, (2.12)

is exactly controllable. It is practical at this position to present the controllability operator
linked with (2.11)-(2.12) as

ΓT
0 =

∫ T

0
Sα(T − s)CC∗S∗

α(T − s)ds,

where C∗ and S∗
α(t) denotes the adjoints of C and Sα(t), accordingly. It is simple that the

operator ΓT
0 is a linear bounded operator [35, Theorem 3.2].

Lemma 2.5. If the linear fractional model (2.11)-(2.12) is exactly controllable if and only then
for some γ > 0 such that ⟨ΓT

0 x, x⟩ ≥ γ∥x∥2, for all x ∈ X and as a result ∥(ΓT
0 )

−1∥ ≤ 1
γ .

Remark 2.2. Further, we assume that the linear fractional control system (2.11)-(2.12) is
exactly controllable.

3. EXISTENCE RESULTS

In this section, we exhibit and demonstrate the existence of solutions for the structure (1.1)-
(1.2) under Banach fixed point theorem. In the first place, we present the mild solution for the
model (1.1)–(1.2).

Definition 3.1. A function x : (−∞, T ] → X, is called a mild solution of (1.1)-(1.2) on [0, T ], if

x0 = ς; x|[0,T ] ∈ C([0, T ] : X); the function s→ A Sα(t−s)G
(
s, xϱ(s,xs),

∫ s

0
e1(s, τ, xϱ(τ,xτ ))dτ

)
and s →

∫ s

0
B(s − τ)Sα(t − s)G

(
τ, xϱ(τ,xτ ),

∫ τ

0
e1(τ, ξ, xϱ(ξ,xξ))dξ

)
dτ is integrable on

[0, t) for all t ∈ (0, T ] and for t ∈ [0, T ],

x(t) = Rα(t)
[
ς(0) + G (0, ς(0), 0)

]
− G

(
t, xϱ(t,xt),

∫ t

0
e1(t, s, xϱ(s,xs))ds

)
−
∫ t

0
A Sα(t− s)G

(
s, xϱ(s,xs),

∫ s

0
e1(s, τ, xϱ(τ,xτ ))dτ

)
ds

−
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)G

(
τ, xϱ(τ,xτ ),

∫ τ

0
e1(τ, ξ, xϱ(ξ,xξ))dξ

)
dτds (3.1)
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+

∫ t

0
Sα(t− s)F

(
s, xϱ(s,xs),

∫ s

0
e2(s, τ, xϱ(τ,xτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)H

(
s, xϱ(s,xs),

∫ s

0
e3(s, τ, xϱ(τ,xτ ))dτ

)
ds.

Presently, we itemizing the subsequent suppositions:
(H1) The operator families Rα(t) and Sα(t) are compact for all t > 0, and there exists a

constant M in a way that ∥Rα(t)∥L (X) ≤ M and ∥Sα(t)∥L (X) ≤ M for every t ∈ I
and

∥(−A )ϑSα(t)∥X ≤ Mtα(1−ϑ)−1, 0 < t ≤ T.

(H2) The subsequent conditions are fulfilled.
(a) B(·)x ∈ C(I ,X) for every x ∈ [D((−A )1−ϑ)].
(b) There is a function µ(·) ∈ L1(I ;R+), to ensure that

∥B(s)Sα(t)∥L ([D((−A )ϑ)],X) ≤ Mµ(s)tαϑ−1, 0 ≤ s < t ≤ T.

(H3) (i) The function F : I × Bh × X → X is continuous and we can find positive
constants LF , L̃F > 0 and L∗

F > 0 in ways that

∥F (t, ψ1, x)− F (t, ψ2, y)∥X ≤ LF∥ψ1 − ψ2∥Bh
+ L̃F∥x− y∥X, t ∈ I , x, y ∈ X,

and
L∗

F = max
t∈I

∥F (t, 0, 0)∥X.

(ii) The function H : I × Bh × X → X is continuous and we can find positive
constants LH , L̃H > 0 and L∗

H > 0 in ways that

∥H (t, ψ1, x)− H (t, ψ2, y)∥X ≤ LH ∥ψ1 − ψ2∥Bh
+ L̃H ∥x− y∥X, t ∈ I , x, y ∈ X,

and
L∗

H = max
t∈I

∥H (t, 0, 0)∥X.

(H4) ei : D × Bh → X is continuous and we can find constants Lei > 0, L∗
ei > 0 to ensure

that∥∥ei(t, s, ς)− ei(t, s, ψ)
∥∥
X ≤ Lei∥ς − ψ∥Bh

, (t, s) ∈ D , (ς, ψ) ∈ B2
h, i = 1, 2, 3;

and

L∗
ei = max

t∈I
∥ei(t, s, 0)∥X, i = 1, 2, 3.

(H5) The function G (·) is (−A )ϑ-valued, G : I ×Bh×X → [D((−A )−ϑ)] is continuous
and there exist positive constants LG , L̃G > 0 and L∗

G > 0 such that for all (t, ςj) ∈
I × Bh, j = 1, 2;

∥(−A )ϑG (t, ς1, x)− (−A )ϑG (t, ς2, y)∥X ≤ LG ∥ς1 − ς2∥Bh
+ L̃G ∥x− y∥X, x, y ∈ X,

∥(−A )ϑG (t, ς, 0)∥X ≤ LG ∥ς∥Bh
+ L∗

G ,
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where

L∗
G = max

t∈I
∥(−A )ϑG (t, 0, 0)∥X.

(H6) The following inequalities holds:
(i) Let

MM0

[
LG ∥ς∥Bh

+ L∗
G

]
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
L∗

G + L̃GTL
∗
e1

)
+MT

{
(L∗

F + L∗
H ) + T (L̃FL

∗
e2 + L̃H L∗

e3)
}

+ (D∗
1 r + cn)

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
≤ r,

for some r > 0.
(ii) Let

Λ = D∗
1

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
< 1

be such that 0 ≤ Λ < 1.

Theorem 3.1. Assume that the conditions (H1)-(H6) hold. Then the structure (1.1)-(1.2) has a
unique mild solution on I .

Proof. We will transmute the structure (1.1)-(1.2) into a fixed-point problem. Recognize the
operator Υ : BT → BT specified by

(Υx)(t) =



Rα(t)
[
ς(0) + G (0, ς(0), 0)

]
− G

(
t, xϱ(t,xt),

∫ t

0
e1(t, s, xϱ(s,xs))ds

)
−
∫ t

0
A Sα(t− s)G

(
s, xϱ(s,xs),

∫ s

0
e1(s, τ, xϱ(τ,xτ ))dτ

)
ds

−
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)G

(
τ, xϱ(τ,xτ ),

∫ τ

0
e1(τ, ξ, xϱ(ξ,xξ))dξ

)
dτds

+

∫ t

0
Sα(t− s)F

(
s, xϱ(s,xs),

∫ s

0
e2(s, τ, xϱ(τ,xτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)H

(
s, xϱ(s,xs),

∫ s

0
e3(s, τ, xϱ(τ,xτ ))dτ

)
ds, t ∈ I .
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It is evident that the fixed points of the operator Υ are mild solutions of the model (1.1)-(1.2).
We express the function y(·) : (−∞, T ] → X by

y(t) =

{
ς(t), t ≤ 0;

Rα(t)ς(0), t ∈ I ,

then y0 = ς . For every function z ∈ C(I ,R) with z(0) = 0, we allocate as z̃ is characterized
by

z̃(t) =

{
0, t ≤ 0;

z(t), t ∈ I .

If x(·) fulfills (3.1), we are able to split it as x(t) = y(t) + z(t), t ∈ I , which suggests
xt = yt + zt, for each t ∈ I and also the function z(·) fulfills

z(t) = Rα(t)G (0, ς, 0)

− G

(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),

∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)
−
∫ t

0
A Sα(t− s)

(×)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

−
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)

(×)G

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),

∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
dτds

+

∫ t

0
Sα(t− s)

(×)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)

(×)H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds.

Let B0
T = {z ∈ B0

T : z0 = 0 ∈ Bh}. Let ∥ · ∥B0
T

be the seminorm in B0
T described by

∥z∥B0
T
= sup

t∈I
∥z(t)∥X + ∥z0∥Bh

= sup
t∈I

∥z(t)∥X, z ∈ B0
T ,
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as a result (B0
T , ∥ · ∥B0

T
) is a Banach space. We delimit the operator Υ : B0

T → B0
T by

(Υz)(t)

= Rα(t)G (0, ς, 0)

− G

(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),

∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)
−
∫ t

0
A Sα(t− s)

(×)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

−
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)

(×)G

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),

∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
dτds

+

∫ t

0
Sα(t− s)

(×)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)

(×)H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds.

It is vindicated that the operator Υ has a fixed point if and only if Υ has a fixed point.

Remark 3.1. Let Br = {x ∈ X : ∥x∥ ≤ r} for some r > 0. From the above discussion, we
have the subsequent estimates:

(i)

∥zϱ(s,zs+ys) + yϱ(s,zs+ys)∥Bh

≤ ∥zϱ(s,zs+ys)∥Bh
+ ∥yϱ(s,zs+ys)∥Bh

≤ D∗
1 sup
0≤τ≤s

∥z(τ)∥X + (D∗
2 + J ς)∥z0∥Bh

+ D∗
1 |y(s)|+ (D∗

2 + J ς)∥y0∥Bh

≤ D∗
1 sup
0≤τ≤s

∥z(τ)∥X + D∗
1∥Rα(t)∥L (X)|ς(0)|+ (D∗

2 + J ς)∥ς∥Bh

≤ D∗
1 sup
0≤τ≤s

∥z(τ)∥X + D∗
1MH∥ς∥Bh

+ (D∗
2 + J ς)∥ς∥Bh

≤ D∗
1 sup
0≤τ≤s

∥z(τ)∥X + (D∗
1MH + D∗

2 + J ς)∥ς∥Bh
.
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In the event that ∥z∥X < r, r > 0, then

∥zρ(s,zs+ys) + yρ(s,zs+ys)∥Bh
≤ D∗

1 r + cn,

where cn = (D∗
1MH + D∗

2 + J ς)∥ς∥Bh
.

(ii) From suppositions (H1) and (H5), we sustain

∥Rα(t)∥L (X)∥G (0, ς, 0)∥X ≤ MM0

[
LG ∥ς∥Bh

+ L∗
G

]
,

where ∥(−A )−ϑ∥ = M0.
(iii)∥∥∥∥G (t, zϱ(t,zt+yt) + yϱ(t,zt+yt),

∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)∥∥∥∥
X

≤ ∥(−A )−ϑ∥

[∥∥∥(−A )ϑG

(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)
− (−A )ϑG (t, 0, 0)

∥∥∥
X
+ ∥(−A )ϑG (t, 0, 0)∥X

]

≤ M0

[
LG ∥zρ(t,zt+yt) + yρ(t,zt+yt)∥Bh

+ L̃G

∥∥∥∥ ∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

∥∥∥∥
X

+ L∗
G

]
≤ M0LG (D

∗
1 r + cn) +M0L̃G

∫ t

0

[∥∥e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))− e1(t, s, 0)
∥∥
X

+ ∥e1(t, s, 0)∥X

]
ds+M0L

∗
G

≤ M0LG (D
∗
1 r + cn) +M0L

∗
G +M0L̃GT

[
Le1∥zρ(t,zt+yt) + yρ(t,zt+yt)∥Bh

+ L∗
e1

]
≤ M0LG (D

∗
1 r + cn) +M0L

∗
G +M0L̃GTLe1(D

∗
1 r + cn) +M0L̃GTL

∗
e1 ,

and∥∥∥∥∥G
(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),

∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)

− G

(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),

∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)∥∥∥∥∥
X

≤ ∥(−A )−ϑ∥

∥∥∥∥∥(−A )ϑG

(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),
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0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)
− (−A )ϑG

(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),

∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)∥∥∥∥∥
X

≤ M0

[
LG ∥zϱ(t,zt+yt) − zϱ(t,zt+yt)∥Bh

+ L̃GTLe1∥zϱ(t,zt+yt) − zϱ(t,zt+yt)∥Bh

]
≤ M0D

∗
1

[
LG + L̃GTLe1

]
∥z − z∥B0

T
,

since

∥zϱ(s,zs+ys) − zϱ(s,zs+ys)∥Bh

≤ D∗
1 |z(s)|+ (D∗

2 + J ς)∥z0∥Bh
− D∗

1 |z(s)| − (D∗
2 + J ς)∥z0∥Bh

≤ D∗
1 |z(s)− z(s)|X

≤ D∗
1∥z − z∥B0

T
.

(iv) ∥∥∥∥∫ t

0
A Sα(t− s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

∥∥∥∥
X

≤
∫ t

0
∥(−A )1−ϑSα(t− s)∥X

[
∥(−A )ϑG

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
− (−A )ϑG (s, 0, 0)∥X

+ ∥(−A )ϑG (s, 0, 0)∥X

]
ds

≤
∫ t

0
M(t− s)αϑ−1

[
LG ∥zϱ(s,zs+ys) + yϱ(s,zs+ys)∥Bh

+ L̃G

∫ s

0

[
∥e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))− e1(s, τ, 0)∥X + ∥e1(s, τ, 0)∥X

]
dτ

+ L∗
G

]
ds

≤ MTαϑ

αϑ

[
LG (D

∗
1 r + cn) + L̃GTLe1(D

∗
1 r + cn) + L̃GTL

∗
e1 + L∗

G

]



64 S. KAILASAVALLI, S. SUGANYA, AND MANI MALLIKA ARJUNAN

≤ MTαϑ

αϑ
(D∗

1 r + cn)
{
LG + L̃GTLe1

}
+

MTαϑ

αϑ
L̃GTL

∗
e1 +

MTαϑ

αϑ
L∗

G ,

and ∥∥∥ ∫ t

0
A Sα(t− s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

−
∫ t

0
A Sα(t− s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds
∥∥∥
X

≤
∫ t

0
∥(−A )1−ϑSα(t− s)∥X

[∥∥∥(−A )ϑG

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
− (−A )ϑG

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)∥∥∥
X

]
ds

≤
∫ t

0
M(t− s)αϑ−1

[
LG ∥zϱ(s,zs+ys) − zϱ(s,zs+ys)∥Bh

+ L̃GTLe1∥zϱ(s,zs+ys) − zϱ(s,zs+ys)∥Bh

]
ds

≤ MTαϑ

αϑ
D∗

1

[
LG + L̃GTLe1

]
∥z − z∥B0

T
.

(v)∥∥∥∥ ∫ t

0

∫ s

0
B(s− τ)Sα(t− s)G

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
dτds

∥∥∥∥
X

≤
∫ t

0

∫ s

0
µ(s− τ)M(t− s)αϑ−1

(×)

[
∥(−A )ϑG

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),

∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
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− ∥(−A )ϑG (τ, 0, 0)∥X + ∥(−A )ϑG (τ, 0, 0)∥X

]
dτds

≤
(
MTαϑ

αϑ

∫ T

0
µ(τ)dτ

)[
LG ∥zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ )∥Bh

+ L̃G

∫ t

0

[
∥e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))

− e1(t, s, 0)∥X + ∥e1(t, s, 0)∥X
]
ds+ L∗

G

]

≤
(
MTαϑ

αϑ

∫ T

0
µ(τ)dτ

)[
(D∗

1 r + cn){LG + L̃GTLe1}+ L̃GTL
∗
e1 + L∗

G

]
,

and ∥∥∥∥∥
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)G

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
dτds

−
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)G

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
dτds

∥∥∥∥∥
X

≤
∫ t

0

∫ s

0
µ(s− τ)M(t− s)αϑ−1

[
∥(−A )ϑG

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
− (−A )ϑG

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
∥X

]
dτds

≤
(
MTαϑ

αϑ

∫ T

0
µ(τ)dτ

)[
LG ∥zϱ(t,zt+yt) − zϱ(t,zt+yt)∥Bh

+ L̃GTLe1∥zϱ(t,zt+yt) − zϱ(t,zt+yt)∥Bh

]
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≤
(
MTαϑ

αϑ

∫ T

0
µ(τ)dτ

)
D∗

1

[
LG + L̃GTLe1

]
∥z − z∥B0

T
.

(vi) ∥∥∥∥ ∫ t

0
Sα(t− s)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

∥∥∥∥
X

≤
∫ t

0
∥Sα(t− s)∥L (X)

[
∥F
(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
− F (s, 0, 0)∥X + ∥F (s, 0, 0)∥X

]
ds

≤ M
∫ t

0

[
LF∥zϱ(s,zs+ys) + yϱ(s,zs+ys)∥Bh

+ L̃F

∫ s

0

[
∥e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))− e2(s, τ, 0)∥X + ∥e2(s, τ, 0)∥X

]
dτ

+ L∗
F

]
ds

≤ MT

[
(D∗

1 r + cn)
{
LF + L̃FTLe2

}
+ L̃FTL

∗
e2 + L∗

F

]
,

and∥∥∥∥∥
∫ t

0
Sα(t− s)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

−
∫ t

0
Sα(t− s)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

∥∥∥∥∥
X

≤
∫ t

0
∥Sα(t− s)∥L (X)

[
LF∥zϱ(s,zs+ys) − zϱ(s,zs+ys)∥Bh

+ L̃FTLe2∥zϱ(s,zs+ys) − zϱ(s,zs+ys)∥Bh

]
ds

≤ MTD∗
1

{
LF + L̃FTLe2

}
∥z − z∥B0

T
.
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(vii)∥∥∥∥ ∫ t

0
Sα(t− s)H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

∥∥∥∥
X

≤
∫ t

0
∥Sα(t− s)∥L (X)

[
∥H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
− H (s, 0, 0)∥X + ∥H (s, 0, 0)∥X

]
ds

≤ M
∫ t

0

[
LH ∥zϱ(s,zs+ys) + yϱ(s,zs+ys)∥Bh

+ L̃H

∫ s

0

[
∥e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))− e3(s, τ, 0)∥X + ∥e3(s, τ, 0)∥X

]
dτ

+ L∗
H

]
ds

≤ MT

[
(D∗

1 r + cn)
{
LH + L̃H TLe3

}
+ L̃H TL∗

e3 + L∗
H

]
,

and∥∥∥∥∥
∫ t

0
Sα(t− s)H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

−
∫ t

0
Sα(t− s)H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

∥∥∥∥∥
X

≤
∫ t

0
∥Sα(t− s)∥L (X)

[
LH ∥zϱ(s,zs+ys) − zϱ(s,zs+ys)∥Bh

+ L̃H TLe3∥zϱ(s,zs+ys) − zϱ(s,zs+ys)∥Bh

]
ds

≤ MTD∗
1

{
LH + L̃H TLe3

}
∥z − z∥B0

T
.

Now, we enter the main proof of this theorem. Initially, we demonstrate that Υ mapsBr(0,B0
T )

into Br(0,B0
T ). For any z(·) ∈ B0

T , by employing Remark 3.1, we sustain

∥(Υz)(t)∥X

MM0

[
LG ∥ς∥Bh

+ L∗
G

]
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
L∗

G + L̃GTL
∗
e1

)
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+MT
{
(L∗

F + L∗
H ) + T (L̃FL

∗
e2 + L̃H L∗

e3)
}

+ (D∗
1 r + cn)

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
≤ r.

Therefore, Υ maps the ball Br(0,B0
T ) into itself. Finally, we show that Υ is a contraction on

Br(0,B0
T ). For this, let us consider z, z ∈ Br(0,B0

T ), then from Remark 3.1, we sustain

∥(Υz)(t)− (Υz)(t)∥X

≤ D∗
1

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
∥z − z∥B0

T

≤ Λ∥z − z∥B0
T
.

From the assumption (H6) and in the perspective of the contraction mapping principle, we
understand that Υ includes a unique fixed point z ∈ B0

T which is a mild solution of the model
(1.1)-(1.2) on (−∞, T ]. The proof is now completed. �

4. CONTROLLABILITY RESULTS

In this section, we present and prove the controllability of FNIDS with SDD of the structure
(1.3)-(1.4) under Banach fixed point theorem. First, we present the mild solution for the model
(1.3)-(1.4).

Definition 4.1. A function x : (−∞, T ] → X, is called a mild solution of (1.3)-(1.4) on [0, T ], if

x0 = ς; x|[0,T ] ∈ C([0, T ] : X); the function s→ A Sα(t−s)G
(
s, xϱ(s,xs),

∫ s

0
e1(s, τ, xϱ(τ,xτ ))dτ

)
and s →

∫ s

0
B(s − τ)Sα(t − s)G

(
τ, xϱ(τ,xτ ),

∫ τ

0
e1(τ, ξ, xϱ(ξ,xξ))dξ

)
dτ is integrable on

[0, t) for all t ∈ (0, T ] and for t ∈ [0, T ] and u ∈ L2(I , U),

x(t) = Rα(t)
[
ς(0) + G (0, ς(0), 0)

]
− G

(
t, xϱ(t,xt),

∫ t

0
e1(t, s, xϱ(s,xs))ds

)
−
∫ t

0
A Sα(t− s)G

(
s, xϱ(s,xs),

∫ s

0
e1(s, τ, xϱ(τ,xτ ))dτ

)
ds

−
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)G

(
τ, xϱ(τ,xτ ),

∫ τ

0
e1(τ, ξ, xϱ(ξ,xξ))dξ

)
dτds (4.1)
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+

∫ t

0
Sα(t− s)F

(
s, xϱ(s,xs),

∫ s

0
e2(s, τ, xϱ(τ,xτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)H

(
s, xϱ(s,xs),

∫ s

0
e3(s, τ, xϱ(τ,xτ ))dτ

)
ds+

∫ t

0
Sα(t− s)Cu(s)ds.

For the study of the structure (1.3)-(1.4), we report the further right after hypothesis:

(H6)∗ The following inequalities holds:
(i) Let

(
1

γ
M2M2

CT

)
∥xT ∥+

(
1 +

1

γ
M2M2

CT

)[
MM0

[
LG ∥ς∥Bh

+ L∗
G

]
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
L∗

G + L̃GTL
∗
e1

)
+MT

{
(L∗

F + L∗
H ) + T (L̃FL

∗
e2 + L̃H L∗

e3)
}

+ (D∗
1 r + cn)

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]]
≤ r,

for some r > 0.
(ii) Let

Λ =

(
1 +

1

γ
M2M2

CT

)
D∗

1

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
< 1

be such that 0 ≤ Λ < 1.

Theorem 4.1. Assume that the conditions (H1)-(H5) and (H6)∗ hold. Then the control system
(1.3)-(1.4) is exactly controllable on I .
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Proof. Utilizing the hypothesis, for an arbitrary function x(·), choose the feedback control
function as follows:

ux(t) =



C∗S∗
α(T − t)(ΓT

0 )
−1

[
xT −Rα(T )

[
ς(0) + G (0, ς(0), 0)

]
+G

(
T, xϱ(T,xT ),

∫ T

0
e1(T, s, xϱ(s,xs))ds

)
+

∫ T

0
A Sα(T − s)G

(
s, xϱ(s,xs),

∫ s

0
e1(s, τ, xϱ(τ,xτ ))dτ

)
ds

+

∫ T

0

∫ s

0
B(s− τ)Sα(T − s)

(×)G
(
τ, xϱ(τ,xτ ),

∫ τ
0 e1(τ, ξ, xϱ(ξ,xξ))dξ

)
dτds

−
∫ T

0
Sα(T − s)F

(
s, xϱ(s,xs),

∫ s

0
e2(s, τ, xϱ(τ,xτ ))dτ

)
ds

−
∫ T

0
Sα(T − s)H

(
s, xϱ(s,xs),

∫ s

0
e3(s, τ, xϱ(τ,xτ ))dτ

)
ds

]
.

(4.2)

Presently, we determine the operator Υ1 : BT → BT by

(Υ1x)(t) = Rα(t)
[
ς(0) + G (0, ς(0), 0)

]
− G

(
t, xϱ(t,xt),

∫ t

0
e1(t, s, xϱ(s,xs))ds

)
−
∫ t

0
A Sα(t− s)G

(
s, xϱ(s,xs),

∫ s

0
e1(s, τ, xϱ(τ,xτ ))dτ

)
ds

−
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)G

(
τ, xϱ(τ,xτ ),

∫ τ

0
e1(τ, ξ, xϱ(ξ,xξ))dξ

)
dτds

+

∫ t

0
Sα(t− s)F

(
s, xϱ(s,xs),

∫ s

0
e2(s, τ, xϱ(τ,xτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)H

(
s, xϱ(s,xs),

∫ s

0
e3(s, τ, xϱ(τ,xτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)Cux(s)ds, t ∈ I .

Observe that the control (4.2) transfers the system (1.3)-(1.4) from the initial state ς to the final
state xT provided that the operator Υ1 has a fixed point. To confirm the exact controllability
outcome, it is adequate to demonstrate that the operator Υ1 has a fixed point in BT .
We express the function y(·) : (−∞, T ] → X by

y(t) =

{
ς(t), t ≤ 0;

Rα(t)ς(0), t ∈ I ,
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then y0 = ς . For every function z ∈ C(I ,R) with z(0) = 0, we allocate as z̃ is characterized
by

z̃(t) =

{
0, t ≤ 0;

z(t), t ∈ I .

If x(·) fulfills (4.1), we are able to split it as x(t) = y(t) + z(t), t ∈ I , which suggests
xt = yt + zt, for each t ∈ I and also the function z(·) fulfills

z(t) =



Rα(t)G (0, ς, 0)− G

(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)
−
∫ t

0
A Sα(t− s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds−

∫ t

0

∫ s

0
B(s− τ)Sα(t− s)

×G

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),

∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
dτds

+

∫ t

0
Sα(t− s)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds+

∫ t

0
Sα(t− s)Cuz+y(s)ds,

where

uz+y(t) = C∗S∗
α(T − t)(ΓT

0 )
−1

[
xT −Rα(T )G (0, ς, 0)

+ G

(
T, zϱ(T,zT+yT ) + yϱ(T,zT+yT ),

∫ T

0
e1(T, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)
+

∫ T

0
A Sα(T − s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

+

∫ T

0

∫ s

0
B(s− τ)Sα(T − s)G

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),
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0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
dτds

−
∫ T

0
Sα(T − s)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

−
∫ T

0
Sα(T − s)H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

]
.

Let B0
T = {z ∈ B0

T : z0 = 0 ∈ Bh}. Let ∥ · ∥B0
T

be the seminorm in B0
T described by

∥z∥B0
T
= sup

t∈I
∥z(t)∥X + ∥z0∥Bh

= sup
t∈I

∥z(t)∥X, z ∈ B0
T ,

as a result (B0
T , ∥ · ∥B0

T
) is a Banach space. We delimit the operator Υ1 : B0

T → B0
T by

(Υ1z)(t) = Rα(t)G (0, ς, 0)− G

(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt),∫ t

0
e1(t, s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

)
−
∫ t

0
A Sα(t− s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e1(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

−
∫ t

0

∫ s

0
B(s− τ)Sα(t− s)G

(
τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ),∫ τ

0
e1(τ, ξ, zϱ(ξ,zξ+yξ) + yϱ(ξ,zξ+yξ))dξ

)
dτds

+

∫ t

0
Sα(t− s)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e2(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

+

∫ t

0
Sα(t− s)H

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
e3(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds+

∫ t

0
Sα(t− s)Cuz+y(s)ds.
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Remark 4.1. In addition to Remark 3.1, we have the subsequent estimates:

(i)

∥Cuz+y(s)∥ ≤
(
1

γ
MM2

C

)[
∥xT ∥+MM0

[
LG ∥ς∥Bh

+ L∗
G

]
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
L∗

G + L̃GTL
∗
e1

)
+MT

{
(L∗

F + L∗
H ) + T (L̃FL

∗
e2 + L̃H L∗

e3)
}

+ (D∗
1 r + cn)

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]]
,

and

∥Cuz+y(s)− Cuz+y(s)∥

≤
(
1

γ
MM2

C

)
D∗

1

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
∥z − z∥B0

T
.

Therefore, we have∥∥∥∥∫ t

0
Sα(t− s)Cuz+y(s)ds

∥∥∥∥
X
≤ C̃1 + C̃2,

where

C̃1 =

(
1

γ
M2M2

CT

)
∥xT ∥,

C̃2 =

(
1

γ
M2M2

CT

)[
MM0

[
LG ∥ς∥Bh

+ L∗
G

]
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
L∗

G + L̃GTL
∗
e1

)
+MT

{
(L∗

F + L∗
H ) + T (L̃FL

∗
e2 + L̃H L∗

e3)
}

+ (D∗
1 r + cn)

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
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+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]]
,

and∥∥∥∥∫ t

0
Sα(t− s)

[
Cuz+y(s)− Cuz+y(s)

]
ds

∥∥∥∥
X

≤
(
1

γ
M2M2

CT

)
D∗

1

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
∥z − z∥B0

T
.

Now, we enter the main proof of this theorem. Initially, we demonstrate that Υ1 maps
Br(0,B0

T ) into Br(0,B0
T ). For any z(·) ∈ B0

T , by employing Remark 3.1 and Remark 4.1,
we sustain

∥(Υ1z)(t)∥X ≤ C̃1 + C̃3

≤ r,

where

C̃3 =

(
1 +

1

γ
M2M2

CT

)[
MM0

[
LG ∥ς∥Bh

+ L∗
G

]
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
L∗

G + L̃GTL
∗
e1

)
+MT

{
(L∗

F + L∗
H ) + T (L̃FL

∗
e2 + L̃H L∗

e3)
}

+ (D∗
1 r + cn)

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]]
.

Therefore, Υ1 maps the ball Br(0,B0
T ) into itself. Finally, we show that Υ1 is a contraction

on Br(0,B0
T ). For this, let us consider z, z ∈ Br(0,B0

T ), then from Remark 3.1 and Remark
4.1, we sustain

∥(Υ1z)(t)− (Υ1z)(t)∥X

≤
(
1 +

1

γ
M2M2

CT

)
D∗

1

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
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+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
≤ Λ∥z − z∥B0

T
.

From the assumption (H6)∗ and in the perspective of the contraction mapping principle,
we understand that Υ1 includes a unique fixed point z ∈ B0

T . Thus, the model (1.3)-(1.4) is
exactly controllable on I . The proof is now completed. �

5. APPLICATIONS

Example 5.1:
To exemplify our theoretical outcomes, first we treat the FNIDS with SDD of the model

Dα
t

[
u(t, x) +

∫ t

−∞
e2(s−t)u(s− ϱ1(s)ϱ2(∥u(s)∥), x)

49
ds

+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ϱ1(τ)ϱ2(∥u(τ)∥), x)

36
dτds

]
=

∂2

∂x2
u(t, x)

+

∫ t

0
(t− s)δe−γ(t−s) ∂

2

∂x2
u(s, x)ds+

∫ t

−∞
e2(s−t)u(s− ϱ1(s)ϱ2(∥u(s)∥), x)

9
ds

+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ϱ1(τ)ϱ2(∥u(τ)∥), x)

25
dτds

+

∫ t

−∞
e2(s−t)u(s− ϱ1(s)ϱ2(∥u(s)∥), x)

64
ds

+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ϱ1(τ)ϱ2(∥u(τ)∥), x)

16
dτds, (5.1)

u(t, 0) = 0 = u(t, π), t ∈ [0, T ], (5.2)

u(t, x) = ς(t, x), t ≤ 0, x ∈ [0, π], (5.3)

where Dα
t is Caputo’s fractional derivative of order α ∈ (1, 2), δ and γ are positive numbers

and ς ∈ Bh. We consider X = L2[0, π] having the norm | · |L2 and determine the operator
A : D(A ) ⊂ X → X by A w = w′′ with the domain

D(A ) = {w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0}.

Then

A w =

∞∑
n=1

n2⟨w,wn⟩wn, w ∈ D(A ),

in which wn(s) =
√

2
π sin(ns), n = 1, 2, . . . , . is the orthogonal set of eigenvectors of A . It

is long familiar that A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 in X
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and is provided by

T (t)w =

∞∑
n=1

e−n2t⟨w,wn⟩wn, for all w ∈ X, and every t > 0.

Hence (H1) is fulfilled. If we fix ϑ = 1
2 , then the operator (−A )

1
2 is given by

(−A )
1
2w =

∞∑
n=1

n⟨w,wn⟩wn, w ∈ (D(−A )
1
2 ),

in which (D(−A )
1
2 ) =

{
ω(·) ∈ X :

∞∑
n=1

n⟨ω,wn⟩wn ∈ X

}
and ∥(−A )−

1
2 ∥ = 1. Therefore,

A is sectorial of type and the properties (P1) hold. We also take into account the operator
B(t) : D(A ) ⊆ X → X, t ≥ 0, B(t)x = tδe−γtA x for x ∈ D(A ). In addition, it is simple
to see that conditions (P2)-(P3)[for more details, refer [23]] are fulfilled with b(t) = tδe−γt

and D = C∞
0 ([0, π]), where C∞

0 ([0, π]) is the space of infinitely differentiable functions that
vanish at x = 0 and x = π. From the Lemma 2.4, it is simple to see that condition (H2) is

fulfills. For the phase space, we choose h = e2s, s < 0, then l =
∫ 0

−∞
h(s)ds =

1

2
< ∞, for

t ≤ 0 and determine

∥ς∥Bh
=

∫ 0

−∞
h(s) sup

θ∈[s,0]
∥ς(θ)∥L2ds.

Hence, for (t, ς) ∈ [0, T ]× Bh, where ς(θ)(x) = ς(θ, x), (θ, x) ∈ (−∞, 0]× [0, π]. Set

u(t)(x) = u(t, x), ϱ(t, ς) = ϱ1(t)ϱ2(∥ς(0)∥),
we have

G (t, ς,H ς)(x) =

∫ 0

−∞
e2(s)

ς

49
ds+ (H ς)(x),

F (t, ς, H̃ ς)(x) =

∫ 0

−∞
e2(s)

ς

9
ds+ (H̃ ς)(x),

H (t, ς, Ĥ ς)(x) =

∫ 0

−∞
e2(s)

ς

64
ds+ (Ĥ ς)(x),

where

(H ς)(x) =

∫ t

0
sin(t− s)

∫ 0

−∞
e2(τ)

ς

36
dτds,

(H̃ ς)(x) =

∫ t

0
sin(t− s)

∫ 0

−∞
e2(τ)

ς

25
dτds,

(Ĥ ς)(x) =

∫ t

0
sin(t− s)

∫ 0

−∞
e2(τ)

ς

16
dτds,
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then using these configurations, the system (5.1)-(5.3) is usually written in the theoretical form
of design (1.1)-(1.2).

To treat this system we assume that ϱi : [0,∞) → [0,∞), i = 1, 2 are continuous. Now, we
can see that for t ∈ [0, T ], ς, ς ∈ Bh, we have

∥(−A )
1
2 G (t, ς,H ς)∥X

≤

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ ς
49

∥∥∥ ds+ ∫ t

0
∥ sin(t− s)∥

∫ 0

−∞
e2(τ)

∥∥∥ ς
36

∥∥∥ dτds)2

dx

) 1
2

≤

(∫ π

0

(
1

49

∫ 0

−∞
e2(s) sup ∥ς∥ds+ 1

36

∫ 0

−∞
e2(s) sup ∥ς∥ds

)2

dx

) 1
2

≤
√
π

49
∥ς∥Bh

+

√
π

36
∥ς∥Bh

≤ LG ∥ς∥Bh
+ L̃G ∥ς∥Bh

,

where LG + L̃G = 85
√
π

1764 , and

∥(−A )
1
2 G (t, ς,H ς)− (−A )

1
2 G (t, ς,H ς)∥X

≤

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥∥ ς49 − ς

49

∥∥∥∥ ds+ ∫ t

0
∥ sin(t− s)∥

∫ 0

−∞
e2(τ)

∥∥∥∥ ς36 − ς

36

∥∥∥∥ dτds)2

dx

) 1
2

≤

(∫ π

0

(
1

49

∫ 0

−∞
e2(s) sup ∥ς − ς∥ds+ 1

36

∫ 0

−∞
e2(s) sup ∥ς − ς∥ds

)2

dx

) 1
2

≤
√
π

49
∥ς − ς∥Bh

+

√
π

36
∥ς − ς∥Bh

≤ LG ∥ς − ς∥Bh
+ L̃G ∥ς − ς∥Bh

.

Similarly, we conclude

∥F (t, ς, H̃ ς)∥L2

≤

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ ς
9

∥∥∥ ds+ ∫ t

0
∥ sin(t− s)∥

∫ 0

−∞
e2(τ)

∥∥∥ ς
25

∥∥∥ dτds)2

dx

) 1
2

≤

(∫ π

0

(
1

9

∫ 0

−∞
e2(s) sup ∥ς∥ds+ 1

25

∫ 0

−∞
e2(s) sup ∥ς∥ds

)2

dx

) 1
2

≤
√
π

9
∥ς∥Bh

+

√
π

25
∥ς∥Bh

≤ LF∥ς∥Bh
+ L̃F∥ς∥Bh

,
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where LF + L̃F = 34
√
π

225 , and

∥F (t, ς, H̃ ς)− F (t, ς, H̃ ς)∥L2

≤

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥∥ ς9 − ς

9

∥∥∥∥ ds+ ∫ t

0
∥ sin(t− s)∥

∫ 0

−∞
e2(τ)

∥∥∥∥ ς25 − ς

25

∥∥∥∥ dτds)2

dx

) 1
2

≤

(∫ π

0

(
1

9

∫ 0

−∞
e2(s) sup ∥ς − ς∥ds+ 1

25

∫ 0

−∞
e2(s) sup ∥ς − ς∥ds

)2

dx

) 1
2

≤
√
π

9
∥ς − ς∥Bh

+

√
π

25
∥ς − ς∥Bh

≤ LF∥ς − ς∥Bh
+ L̃F∥ς − ς∥Bh

.

Correspondingly, we have

∥H (t, ς, Ĥ ς)∥L2

≤

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ ς
64

∥∥∥ ds+ ∫ t

0
∥ sin(t− s)∥

∫ 0

−∞
e2(τ)

∥∥∥ ς
16

∥∥∥ dτds)2

dx

) 1
2

≤

(∫ π

0

(
1

64

∫ 0

−∞
e2(s) sup ∥ς∥ds+ 1

16

∫ 0

−∞
e2(s) sup ∥ς∥ds

)2

dx

) 1
2

≤
√
π

64
∥ς∥Bh

+

√
π

16
∥ς∥Bh

≤ LH ∥ς∥Bh
+ L̃H ∥ς∥Bh

,

where LH + L̃H = 80
√
π

1024 , and

∥H (t, ς, Ĥ ς)− H (t, ς, Ĥ ς)∥L2

≤

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥∥ ς64 − ς

64

∥∥∥∥ ds+ ∫ t

0
∥ sin(t− s)∥

∫ 0

−∞
e2(τ)

∥∥∥∥ ς16 − ς

16

∥∥∥∥ dτds)2

dx

) 1
2

≤

(∫ π

0

(
1

64

∫ 0

−∞
e2(s) sup ∥ς − ς∥ds+ 1

16

∫ 0

−∞
e2(s) sup ∥ς − ς∥ds

)2

dx

) 1
2

≤
√
π

64
∥ς − ς∥Bh

+

√
π

16
∥ς − ς∥Bh

≤ LH ∥ς − ς∥Bh
+ L̃H ∥ς − ς∥Bh

.
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Therefore the conditions (H3) and (H5) are all fulfilled. Furthermore, we assume that D∗
1 =

1,M0 = 1,M = 1, T = 1, α = 3
2 , Le1 = 1, Le2 = 1, Le3 = 1 and

∫ 1

0
µ(τ)dτ = 1. Then

D∗
1

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
≈ 0.71941 < 1.

Thus the condition (H6) holds. Hence by Theorem 3.1, we realize that the system (5.1)–(5.3)
has a unique mild solution on [0, 1].

Example 5.2:
In this section, as an application of Theorem 4.1, we treat the FNIDS with SDD of the model

Dα
t

[
u(t, x) +

∫ t

−∞
e2(s−t)u(s− ϱ1(s)ϱ2(∥u(s)∥), x)

49
ds

+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ϱ1(τ)ϱ2(∥u(τ)∥), x)

36
dτds

]
=

∂2

∂x2
u(t, x)

+

∫ t

0
(t− s)δe−γ(t−s) ∂

2

∂x2
u(s, x)ds+ ν(t, x) +

∫ t

−∞
e2(s−t)u(s− ϱ1(s)ϱ2(∥u(s)∥), x)

9
ds

+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ϱ1(τ)ϱ2(∥u(τ)∥), x)

25
dτds

+

∫ t

−∞
e2(s−t)u(s− ϱ1(s)ϱ2(∥u(s)∥), x)

64
ds

+

∫ t

0
sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ϱ1(τ)ϱ2(∥u(τ)∥), x)

16
dτds, (5.4)

with the conditions (5.2)-(5.3), Dα
t , α, δ and γ are same as defined in Example 5.1. Further,

we define the operator C : U → X by Cu(t, x) = ν(t, x), 0 < x < π, u ∈ U, where ν :
[0, 1] × [0, π] → [0, π]. In perspective of Example 5.1 and using these configurations, the
system (5.4) with the conditions (5.2)-(5.3) is usually written in the theoretical form of design
(1.3)-(1.4).

Furthermore, we assume that D∗
1 = 1

2 ,M0 = 1,M = 1,MC = 1, γ = 1, T = 1, α =

3
2 , Le1 = 1, Le2 = 1, Le3 = 1 and

∫ 1

0
µ(τ)dτ = 1. Then

(
1 +

1

γ
M2M2

CT

)
D∗

1

[
MT

(
(LF + LH ) + T (L̃FLe2 + L̃H Le3)

)
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+

{
M0 +

MTαϑ

αϑ

(
1 +

∫ T

0
µ(τ)dτ

)}(
LG + L̃GTLe1

)]
≈ 0.71941 < 1.

Thus the condition (H6)∗ holds. Hence by Theorem 4.1, we realize that the system (5.4)
with the conditions (5.2)–(5.3) has a unique mild solution on [0, 1].
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