
East Asian Mathematical Journal

Vol. 25 (2009), No. 1, pp. 45–53

SENSITIVITY ANALYSIS FOR COMPLETELY
GENERALIZED NONLINEAR VARIATIONAL INCLUSIONS

Salahuddin and M. Firdosh Khan

Abstract. In this paper, by using the technique of the resolvent oper-
ators, we study the behaviour and sensitivity analysis of the solutions

set for a class of parametric completely generalized nonlinear variational

inclusions with set-valued mappings.

1. Introduction

Sensitivity analysis of solutions of variational inequalities with single-valued
mappings have been studied by many authors via quite different techniques.
By using the projection method, Dafermos [3], Yen [13], Robinson [10], Qiu
and Magnanti [9], Mukherjee and Verma [5] and Pan [8] studied the sensi-
tivity analysis of solutions of some variational inequalities with single valued
mappings in finite dimensional spaces and Hilbert spaces.

Our inspiration and motivation is devoted to [4,7,11,12,14], we use the tech-
nique of resolvent operator, study the behaviour and sensitivity analysis of the
solution set for a class of parametric completely generalized nonlinear varia-
tional inclusions with set-valued mappings. Our results improves the results of
Dafermos [3], Ding and Lou [4], and Park and Jeong [7], etc.

Let H be a real Hilbert space with norm and inner product denoted by
‖ · ‖ and 〈·〉, respectively. Let ∂ϕ denote the subdifferential of a proper convex
and lower semicontinuous function ϕ : H × H → R ∪ {+∞}. Given set-
valued mappings M,S, T : H → 2H , where 2H denotes the family of nonempty
bounded subsets of H and single valued mappings g, F,G, P : H → H with
Im(g) ∩ dom ∂ϕ(·, v) 6= ∅. It is known that the subdifferential ∂ϕ(·, v) is a
maximal monotone operator.

Let δ : 2H → [0,+∞) be a function defined by

δ(A,B) = sup{‖a− b‖ : a ∈ A, b ∈ B}.
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Let Ĥ : C(H)→ [0,∞) be a function defined by

Ĥ(A,B) = max
{

sup
u∈A

d(u,B), sup
v∈B

d(A, v)
}
,

where
d(u,B) = sup

v∈B
‖u− v‖,

then (2H , δ) and (C(H), Ĥ) are complete metric spaces.
We consider the following completely generalized nonlinear variational in-

clusions for finding u ∈ H, x ∈ M(u), y ∈ S(u) and z ∈ T (u) such that
g(u) ∩ dom ∂ϕ(·, v) 6= ∅ and

(1.1) 〈P (x)− (Fy −Gz), v − g(u)〉 ≥ ϕ(g(u), u)− ϕ(v, u), for all v ∈ H,
considered by Ahmad et al [1].

Definition 1.1 ([2]). If A is a maximal monotone operator on H, then the
resolvent operator associated with A is defined by

(1.2) JA(u) = (I + ηA)−1(u), for all u ∈ H,
where η > 0 is a constant and I is an identity operator. Since the subdifferential
∂ϕ(·, ·) of a proper, convex and lower semicontinuous function ϕ(·, ·) : H×H →
R ∪ {+∞} is a maximal monotone operator with respect to first variable, so
we denote by

J∂ϕ(·,u) = (I + η∂ϕ(·, u))−1

the resolvent operator associated with ϕ(·, u).

Lemma 1.1 ([2]). The resolvent operator JA is a single-valued and nonexpan-
sive, i.e.,

(1.3) ‖JA(u)− JA(v)‖ ≤ ‖u− v‖, for all u, v ∈ H.

2. Preliminaries

In this section, we present the parametric version of (1.1), and also provide
some pertinent definitions which are essential for the study of our problems.
Now, we consider the parametric version of problem (1.1). To formulate the
problem, let Ω be a nonempty open subset of H in which the parameter λ takes
values. Let M,S, T : Ω×H → 2H be the set-valued mappings and g, F,G : Ω×
H → H be the single-valued mappings. Since the subdifferential ∂ϕ of a proper
convex and lower semicontinuous function ϕ : H×H → R∪{+∞} is a maximal
monotone operator with respect to first argument with Im(g)∩dom ∂ϕ(·, v) 6=
∅, v ∈ H. For each fixed λ ∈ Ω, the parametric completely generalized nonlinear
variational inclusions consists of finding u ∈ H, x(u, λ) ∈ M(u, λ), y(u, λ) ∈
S(u, λ) and z(u, λ) ∈ T (u, λ) such that g(u, λ) ∩ dom ∂ϕ(·, v) 6= ∅ and

(2.1)
〈P (x(u, λ), λ)− (F (y(u, λ), λ)−G(z(u, λ), λ)), v − g(u, λ)〉

≥ ϕ(g(u, λ), u)− ϕ(v, u), for all v ∈ H.
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Remark 2.1. By the suitable choice of the mappings M,S, T,G, F, g prob-
lem (2.1) includes many known results as special cases such as [3,4,7] and the
references therein.

Definition 2.1. For all u, v ∈ H, λ ∈ Ω, the parametric operator g : H ×Ω→
H is said to be

(i) strongly monotone if there exists a constant α > 0 such that

〈g(u, λ)− g(v, λ), u− v〉 ≥ α‖u− v‖2,
(ii) Lipschitz continuous if there exists a constant β > 0 such that

‖g(u, λ)− g(v, λ)‖ ≤ β‖u− v‖.
Definition 2.2. For all u, v ∈ H, λ ∈ Ω, the set-valued mapping S : H ×Ω→
2H [S : H × Ω→ C(H)] is said to be

(i) ρ-δ-Lipschitz [ρ-Ĥ-Lipschitz] continuous if there exists a constant ρ > 0
such that

δ(S(u, λ), S(v, λ)) ≤ ρ‖u− v‖,
[Ĥ(S(u, λ), S(v, λ)) ≤ ρ‖u− v‖].

where Ĥ(·, ·) is a Hausdorff metric.
(ii) relaxed Lipschitz continuous with respect to a mapping F : H ×Ω→ H

if there exists a constant s ≥ 0 such that

〈F (y(u, λ), λ)− F (y(v, λ), λ), u− v〉 ≤ −s‖u− v‖2.
for all y(u, λ) ∈ S(u, λ) and y(v, λ) ∈ S(v, λ),

(iii) relaxed monotone with respect to a mapping G : H × Ω → H if there
exists a constant c > 0 such that

〈G(y(u, λ), λ)−G(y(v, λ), λ), u− v〉 ≥ −c‖u− v‖2.
for all y(u, λ) ∈ S(u, λ) and y(v, λ) ∈ S(v, λ).

Assumption 2.1. For all u, v, w ∈ H, the operator J∂ϕ(·,·) satisfies the condi-
tion

‖J∂ϕ(·,u)(w)− J∂ϕ(·,v)(w)‖ ≤ µ‖u− v‖,
where µ > 0 is a constant.

3. Main Results

First of all, we prove the following lemma.

Lemma 3.1. Fixed λ̄ ∈ Ω, ū = u(λ̄) ∈ H, x(u(λ̄), λ̄) ∈M(u(λ̄), λ̄), y(u(λ̄), λ̄) ∈
S(u(λ̄), λ̄), z(u(λ̄), λ̄) ∈ T (u(λ̄), λ̄) is a solution of problem (2.1) if and only if
for some given η > 0, the set valued mapping Q : H × Ω→ 2H defined by
(3.1)
Q(u, λ) =

⋃
x∈M(u,λ), y∈S(u,λ), z∈T (u,λ)

[u− g(u, λ) + J∂ϕ(·,u)(g(u, λ)− η(P (x, λ)− (F (y, λ)−G(z, λ))))]

has a fixed point u(λ̄).
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Proof. For any fixed λ̄ ∈ Ω, let ū = u(λ̄), x(ū, λ̄) ∈ M(ū, λ̄), y(ū, λ̄) ∈ S(ū, λ̄),
z(ū, λ̄) ∈ T (ū, λ̄) be a solution of (2.1). Then ū ∈ H, x(ū, λ̄) ∈ M(ū, λ̄),
y(ū, λ̄) ∈ S(ū, λ̄) and z(ū, λ̄) ∈ T (ū, λ̄) such that

〈P (x(ū, λ̄), λ̄)− (F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄)), v − g(ū, λ̄)〉
≥ ϕ(g(ū, λ̄), u)− ϕ(v, u), for all v ∈ H.

By definition of ∂ϕ, we have

g(ū, λ̄)− η
(
P (x(ū, λ̄), λ̄)− (F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄))

)
∈ g(ū, λ̄).

Thus we obtain

(I+η∂ϕ(·, u))−1

[
g(ū, λ̄)−η

(
P (x(ū, λ̄), λ̄)−(F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄))

)]
= g(ū, λ̄),

i.e.

J∂ϕ(·,u)

[
g(ū, λ̄)−η

(
P (x(ū, λ̄), λ̄)−(F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄))

)]
= g(ū, λ̄).

Hence, we have

ū = ū− g(ū, λ̄)

+ J∂ϕ(·,u)

[
g(ū, λ̄)− η

(
P (x(ū, λ̄), λ̄)− (F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄))

)]
∈
⋃
x(ū,λ̄)∈M(ū,λ̄), y(ū,λ̄)∈S(ū,λ̄), z(ū,λ̄)∈T (ū,λ̄)

J∂ϕ(·,u)

{
g(ū, λ̄)− η

(
P (x(ū, λ̄), λ̄)− (F (y(ū, λ̄), λ̄)−G(zū, λ̄), λ̄))

)}
= Q(ū, λ̄).

This means that ū = u(λ̄) is a fixed point of Q(ū, λ̄). Now, for any fixed λ̄ ∈ Ω,
let ū = u(λ̄) be a fixed point of Q(ū, λ̄). By the definition of Q, there exists
x(ū, λ̄) = M(ū, λ̄), y(ū, λ̄) = S(ū, λ̄) and z(ū, λ̄) = T (ū, λ̄) such that

ū = ū− g(ū, λ̄)

+ J∂ϕ(·,u)

[
g(ū, λ̄)− η

(
P (x(ū, λ̄), λ̄)− (F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄))

)]
i.e.,

g(ū, λ̄) = J∂ϕ(·,u)

[
g(ū, λ̄)− η

(
P (x(ū, λ̄), λ̄)− (F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄))

)]
.

By definition of J∂ϕ we get

g(ū, λ̄)− η(P (x(ū, λ̄), λ̄)− (F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄)))

∈ g(ū, λ̄) + η∂ϕ(·, u)(g(ū, λ̄))

i.e.,

(F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄))− P (x(ū, λ̄), λ̄) ∈ ∂ϕ(·, u)(g(ū, λ̄)).
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Hence by definition of ∂ϕ

〈P (x(ū, λ̄), λ̄)− (F (y(ū, λ̄), λ̄)−G(z(ū, λ̄), λ̄)), v − g(ū, λ̄)〉
≥ ϕ(g(ū, λ̄), u)− ϕ(v, u), for all v ∈ H.

This completes the proof. �

Theorem 3.1. Let g : Ω×H → H be a strongly monotone and locally Lipschitz
continuous with corresponding constants α > 0 and β > 0 respectively. Let
F,G, P : Ω × H → H be the locally Lipschitz continuous with corresponding
constants ξ > 0, ρ > 0 and σ > 0 respectively. Let M,S, T : H×Ω→ 2H be the
locally δ-Lipschitz continuous [Ĥ-Lipschitz continuous] with constants ν > 0,
γ > 0 and ε > 0 respectively and operator S be the relaxed Lipschitz continuous
with respect to F with constant s ≥ 0 and operator T is relaxed monotone with
respect to G with constant ν. Let ϕ : H×H → R∪{+∞} be such that for each
fixed ν ∈ H, ϕ(·, v) is a proper, convex and lower semicontinuous function on
H, such that g(u, λ)∩ dom ∂ϕ(·, v) 6= ∅. Assume that Assumption 2.1 holds. If
there exists a constant η > 0 such that∣∣∣∣η− (s− c)(1− κ)σν

(ξγ + ρε)2 − σ2ν2

∣∣∣∣ <
√

((s−c)(1−κ)σν)2 − κ(2−κ)((ξγ+ρε)2−σ2ν2)
(ξγ + ρε)2 − σ2ν2

,

(3.2)

(s− c) > σν(1− k) +
√
κ(2− κ)((ξγ + ρε)2 − σ2ν2),

s− c > σν(1− κ),
κ < 1,
σν < ξγ + ρε.

Then the set-valued mapping Q : H×Ω→ 2H defined by (3.1) is a uniform θ-δ
set-valued [θ-Ĥ-set valued] contraction mapping with respect to λ ∈ Ω, where

θ = κ+ ησν + t(η) < 1,

κ = 2
√

1− 2α+ β2 + µ,

t(η) =
√

1− 2(s− c)η + η2(ξγ + ρε)2.

Proof. By the definition of Q, for any u, v ∈ H, a(u, λ) ∈ Q(u, λ) and b(v, λ) ∈
Q(v, λ), there exists x1(u, λ) ∈ M(u, λ), y1(u, λ) ∈ S(u, λ), z1(u, λ) ∈ T (u, λ),
x2(v, λ) ∈M(v, λ), y2(v, λ) ∈ S(v, λ) and z2(v, λ) ∈ T (v, λ) such that

a(u, λ) = (u− g(u, λ)

+J∂ϕ(·,u)

[
g(u, λ)−η (P (x1(u, λ), λ)−(F (y1(u, λ), λ)−G(z1(u, λ), λ)))

]
,

b(v, λ) = (v − g(v, λ)

+J∂ϕ(·,v)

[
g(v, λ)−η (P (x2(v, λ), λ)−(F (y2(v, λ), λ)−G(z2(v, λ), λ)))

]
.
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Then by Lemma 1.1 and Assumption 2.1,

(3.3)

‖a(u, λ)− b(v, λ)‖
≤ ‖u− v − (g(u, λ)− g(v, λ))‖

+ ‖J∂ϕ(·,u)[g(u, λ)− η(P (x1(u, λ), λ)− (F (y1(u, λ), λ)

−G(z1(u, λ), λ)))− J∂ϕ(·,u)[g(v, λ)− η(P (x2(v, λ), λ)

− (F (y2(v, λ), λ)−G(z2(v, λ), λ)))‖+ ‖J∂ϕ(·,u)[g(v, λ)

− η(P (x2(v, λ), λ)− (F (y2(v, λ), λ)−G(z2(v, λ), λ)))

− J∂ϕ(·,v)[g(v, λ)− η(P (x2(v, λ), λ)

− (F (y2(v, λ), λ)−G(z2(v, λ), λ)))‖
≤ ‖u− v − (g(u, λ)− g(v, λ))‖

+ ‖g(u, λ)− g(v, λ)− η(P (x1(u, λ), λ)− P (x2(v, λ), λ)

− (F (y1(u, λ), λ)−G(z1(u, λ), λ)) + (F (y2(v, λ), λ)

−G(z2(v, λ), λ))‖+ µ‖u− v‖
≤ 2‖u− v − g(u, λ)− g(v, λ))‖

+ η‖P (x1(u, λ), λ)− P (x2(v, λ), λ)‖+ ‖u− v
+ η(F (y1(u, λ), λ)− F (y2(v, λ), λ))− η(G(z1(u, λ), λ)

−G(z2(v, λ), λ))‖+ µ‖u− v‖.

Since g is strongly monotone and Lipschitz continuous, we have

(3.4) ‖u− v − (g(u, λ)− g(v, λ))‖ ≤
√

1− 2α+ β2 ‖u− v‖.

Since M,S, T are locally δ-Lipschitz continuous, we have and P, F,G are
locally Lipschitz continuous

(3.5)

‖P (x1(u, λ), λ)− P (x2(v, λ), λ)‖ ≤ σ‖x1(u, λ)− x2(v, λ)‖
≤ σδ(M(u, λ), M(v, λ))

≤ σν‖u− v‖,

(3.6)

‖F (y1(u, λ), λ)− F (y2(v, λ), λ)‖ ≤ ξ‖y1(u, λ)− y2(v, λ)‖
≤ ξδ(S(u, λ), S(v, λ))

≤ ξγ‖u− v‖,

(3.7)

‖G(z1(u, λ), λ)−G(z2(v, λ), λ)‖ ≤ ρ‖z1(u, λ)− z2(v, λ)‖
≤ ρδ(T (u, λ), T (v, λ))

≤ ρε‖u− v‖.
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Further since S is locally relaxed Lipschitz continuous and T is locally re-
laxed monotone, we have
(3.8)
‖u−v + η(F (y1(u, λ), λ)−F (y2(v, λ), λ))−η(G(z1(u, λ), λ)−G(z2(v, λ), λ))‖2

≤ ‖u− v‖2 + 2η〈F (y1(u, λ), λ)− F (y2(v, λ), λ), u− v〉
− 2η〈G(z1(u, λ), λ)−G(z2(ν, λ), λ), u− v〉
+ η2‖F (y1(u, λ), λ)− F (y2(v, λ), λ)− (G(z1(u, λ), λ)−G(z2(ν, λ), λ))‖2

≤ [1− 2η(s− c) + η2(ξγ + ρε)2] ‖u− v‖.

From (3.3) and (3.8), we get
(3.9)
‖a(u, λ)− b(v, λ)‖

≤ [2
√

1− 2α+ β2 + σνη +
√

1− 2η(s− c) + η2(ξγ + ρε)2 + µ] ‖u− v‖
≤ (κ+ ησν + t(η)) ‖u− v‖

where κ = 2
√

1− 2α+ β2 + µ and t(η) =
√

1− 2η(s− c) + η2(ξγ + ρε)2.
By the arbitrariness of a(u, λ) and b(v, λ), we have

δ(Q(u, λ), Q(v, λ)) ≤ θd(u, v),

where θ = κ + ησν + t(η). By the condition (3.2) we have θ < 1. This
proves that Q is a uniform θ-δ-set-valued contraction mapping with respect to
λ ∈ Ω. �

Theorem 3.2. Assume that g, F,G, P,M, S, T are follows all hypothesis in
Theorem 3.1. Suppose there exists a constant η > 0 such that (3.2) in Theorem
3.1 and Assumption 2.1 hold. Then

(i) the set-valued mapping Q : H × Ω → 2H defined by (3.1) in Lemma 3.1
is a compact uniform θ-Ĥ-contraction mapping with respect to λ ∈ Ω.

(ii) for each λ ∈ Ω, the (2.1) has nonempty solution set N(λ) and M(λ) is
closed in H.

Proof. For each given (u, λ) ∈ H × Ω. Since M(u, λ), S(u, λ), T (u, λ) ∈
C(H) and J∂ϕ(·,u) is continuous, it follows from the definition of Q(u, λ) that
Q(u, λ) ∈ C(H).

Now, we show that Q(u, λ) is a uniform θ-Ĥ-contraction mapping with re-
spect to λ ∈ Ω. For any given (u, λ), (v, λ) ∈ H × Ω, and for any a ∈ Q(u, λ)
there exist x ∈M(u, λ), y ∈ S(u, λ) and z ∈ T (u, λ) ∈ C(H) such that

a = u− g(u, λ) + J∂φ(·,u)

[
g(u, λ)− η (P (x, λ)− (F (y, λ)−G(z, λ)))

]
.
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Note that M(u, λ), S(u, λ), T (u, λ) ∈ C(H), there exist x1 ∈ M(v, λ), y1 ∈
S(v, λ) and z ∈ T (v, λ) such that

(3.10)

‖x− x1‖ ≤ Ĥ(M(u, λ),M(v, λ)),

‖y − y1‖ ≤ Ĥ(S(u, λ), S(v, λ)),

‖z − z1‖ ≤ Ĥ(T (u, λ), T (v, λ)).

Let

b = v − g(v, λ) + J∂φ(·,v)

[
g(v, λ)− η (P (x1, λ)− (F (y1, λ)−G(z1, λ)))

]
.

Then b ∈ Q(v, λ). Note inequalities (3.10), by using a similar argument as in
the proof of Theorem 3.1, we can obtain

Ĥ(Q(u, λ), Q(v, λ)) ≤ θ‖u− v‖.

This proves that Q(u, λ) is a uniform θ-Ĥ-contraction mapping with respect
to λ ∈ Ω.

(ii) Since Q(u, λ) is a uniform θ-Ĥ-contraction mapping with respect to
λ ∈ Ω, by the Nadler fixed point theorem [6], Q(u, λ) has a fixed point u(λ)
for each λ ∈ Ω. By Lemma 3.1. N(λ) 6= ∅. For each λ ∈ Ω, let {un} ⊂ N(λ)
and let un → u0, as n→∞. Then we have

un ∈ Q(un, λ), n = 1, 2, · · · .
By (i), we have

Ĥ(Q(un, λ), Q(u0, λ)) ≤ θ‖un − u0‖.
It follows that

d(u0, Q(u0, λ)) ≤ ‖u0 − un‖+ d(un, Q(un, λ)) + Ĥ(Q(un, λ), Q(u0, λ))

≤ (1 + θ)‖un − u0‖ → 0 as n→∞,
and hence u0 ∈ Q(u0, λ) and x0 ∈ N(λ). These N(λ) is closed in H.

�
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