Browse > Article
http://dx.doi.org/10.4134/CKMS.2011.26.4.685

GENERAL FRAMEWORK FOR PROXIMAL POINT ALGORITHMS ON (A, η)-MAXIMAL MONOTONICIT FOR NONLINEAR VARIATIONAL INCLUSIONS  

Verma, Ram U. (Department of Mathematics Seminole State College oF Florida)
Publication Information
Communications of the Korean Mathematical Society / v.26, no.4, 2011 , pp. 685-693 More about this Journal
Abstract
General framework for proximal point algorithms based on the notion of (A, ${\eta}$)-maximal monotonicity (also referred to as (A, ${\eta}$)-monotonicity in literature) is developed. Linear convergence analysis for this class of algorithms to the context of solving a general class of nonlinear variational inclusion problems is successfully achieved along with some results on the generalized resolvent corresponding to (A, ${\eta}$)-monotonicity. The obtained results generalize and unify a wide range of investigations readily available in literature.
Keywords
variational inclusions; maximal monotone mapping; (A, $\eta$) maximal monotone mapping; generalized resolvent operator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con- trol Optimization 14 (1976), no. 5, 877-898.   DOI   ScienceOn
2 R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976), no. 2, 97-116.   DOI
3 P. Tseng, A modi ed forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), no. 2, 431-446.   DOI   ScienceOn
4 R. U. Verma, A-monotonicity and its role in nonlinear variational inclusions, J. Optim. Theory Appl. 129 (2006), no. 3, 457-467.   DOI
5 R. U. Verma, Approximation solvability of a class of nonlinear set-valued variational inclusions involving (A,)-monotone mappings, J. Math. Anal. Appl. 337 (2008), no. 2, 969-975.   DOI   ScienceOn
6 R. U. Verma, A-monotone nonlinear relaxed cocoercive variational inclusions, Cent. Eur. J. Math. 5 (2007), no. 2, 386-396.   DOI   ScienceOn
7 R. U. Verma, Relatively inexact proximal point algorithm and linear convergence analysis, Int. J. Math. Math. Sci. 2009 (2009), Art. ID 691952, 11 pp.
8 E. Zeidler, Nonlinear Functional Analysis and its Applications. I, Springer-Verlag, New York, 1986.
9 E. Zeidler, Nonlinear Functional Analysis and its Applications. II/A, Springer-Verlag, New York, 1980.
10 E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B, Springer-Verlag, New York, 1990.
11 E. Zeidler, Nonlinear Functional Analysis and its Applications. III, Springer-Verlag, New York, 1985.
12 R. P. Agarwal and R. U. Verma, Inexact A-proximal point algorithm and applications to nonlinear variational inclusion problems, J. Optim. Theory Appl. 144 (2010), no. 3, 431-444.   DOI
13 J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming 55 (1992), no. 3, Ser. A, 293-318.   DOI
14 Y. P. Fang and N. J. Huang, H-monotone operators and system of variational inclusions, Comm. Appl. Nonlinear Anal. 11 (2004), no. 1, 93-101.
15 H. Y. Lan, J. H. Kim, and Y. J. Cho, On a new class of nonlinear A-monotone multi-valued variational inclusions, Journal of Mathematical Analysis and Applications 327 (2007), no. 1, 481-493.   DOI   ScienceOn
16 S. M. Robinson, Composition duality and maximal monotonicity, Math. Program. 85 (1999), no. 1, Ser. A, 1-13.   DOI
17 T. Pennanen, Local convergence of the proximal point algorithm and multiplier methods without monotonicity, Math. Oper. Res. 27 (2002), no. 1, 170-191.   DOI   ScienceOn