
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 20, No. 3, September 2007

BOUNDEDNESS OF THE SOLUTIONS OF VOLTERRA
DIFFERENCE EQUATIONS

Sung Kyu Choi *, Yoon Hoe Goo **, and Namjip Koo ***

Abstract. Using the representation of the solution by means of
the resolvent, we study the boundedness of the solutions of some
Volterra difference equations.

1. Introduction

Volterra difference equations arise mainly in the process of moldeling
of some real phenomena or by applying a numerical method to a Volterra
integral equation. Sometimes Volterra difference equations describe pro-
cesses whose current state is determined by their entire prehistory. For
a detailed applications of Volterra difference equations, see [5].

A property of crucial importance is the boundedness of the solutions
of a Volterra difference equation. In fact, error between the true and
the numerical solutions of a Volterra integral equation satisfies a discrete
Volterra equation. Thus the boundedness of the solution of this Volterra
discrete equation assumes the boundedness of the global error, that is,
the stability of the considered numerical method [4].

In this paper, we represent the solution of Volterra difference equation

(1) y(n + 1) =
n∑

j=n0

B(n, j)y(j) + f(n)

by means of the resolvent of the equation

(2) x(n + 1) =
n∑

j=n0

B(n, j)x(j),
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and then investigate the boundedness of the solutions of equations (1)
and

(3) y(n + 1) =
n∑

j=n0

[B(n, j) + C(n, j)]y(j).

The main reference is [4].
For asymptotic behaviors of Volterra difference equations, see [2] and

[3].

2. Main results

We denote by Rd the d-dimensional real space, x = {x(n)}n∈Z+ a
sequence with x(n) ∈ Rd, where Z+ is the set of all nonnegative integers.
We consider the discrete linear Volterra equation

(4) x(n + 1) =
n∑

j=n0

B(n, j)x(j), x(n0) = x0, n ≥ n0 ∈ Z+

and the associated linear equation

(5) y(n + 1) =
n∑

j=n0

B(n, j)y(j) + f(n), y(n0) = y0, n ≥ n0,

where the kernel of (4), B(n, j), is a d×d matrix for each j, n ∈ Z+ with
j ≤ n and f : Z+ → Rd is a given sequence in Rd.

The resolvent R(n, s) associated with (4) satisfies

R(n + 1, s) =
n∑

j=s

B(n, j)R(j, s) if s ≤ n,

R(s, s) = I, the identity matrix,(6)
R(n, s) = 0 if n < s.

To examine the boundedness of the solution of (5) we need the following
representation of the solution by the resolvent instead of the variation
of constants formula

Lemma 2.1. The unique solution y(n) of (5) satisfying y(n0) = y0 is
given by

y(n) = R(n, n0)y0 +
n−1∑

j=n0

R(n, j + 1)f(j).(7)
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Proof. We show that y(n) given by (7) satisfies the equation (5).

y (n + 1) = R(n + 1, n0)y0 +
n∑

r=n0

R(n + 1, r + 1)f(r)

=
n∑

j=n0

B(n, j)R(j, n0)y0 +
n∑

r=n0

n∑

j=r+1

B(n, j)R(j, r + 1)f(r)

=
n∑

j=n0

B(n, j)R(j, n0)y0 + f(n) +
n−1∑
r=n0

n∑

j=r+1

B(n, j)R(j, r + 1)f(r)

=
n∑

j=n0

B(n, j)R(j, n0)y0 + f(n) +
n−1∑
r=n0

B(n, n)R(n, r + 1)f(r)

+
n−1∑
r=n0

n−1∑

j=r+1

B(n, j)R(j, r + 1)f(r)

=
n∑

j=n0

B(n, j)R(j, n0)y0 + f(n) +
n−1∑
r=n0

r−1∑

j=n0

B(n, r)R(r, j + 1)f(j)

+
n−1∑

j=n0

B(n, n)R(n, j + 1)f(j)

=
n∑

r=n0

B(n, r)[R(r, n0)y0 +
r−1∑

j=n0

R(r, j + 1)f(j)] + f(n)

=
∑
r=n0

B(n, r)y(r) + f(n).

This completes the proof.

A difference equation x(n + 1) = f(n, x(n)), x(n0) = x0, is called
(i) bounded if for any n0 ∈ Z+ and a number r > 0 there exists a

number α(n0, r) depending on n0 and r such that

|x(n)| = |x(n, n0, x0)| < α(n0, r)

for all n ≥ n0 and x0 with |x0| ≤ r :
(ii) uniformly bounded with respect to the initial moment n0 if α(n0, r)

= α(r), i.e., the constant bounding the solution doses not depend on the
initial moment n0.

Example 2.1 in [4] shows that a bounded equation is not necessar-
ily uniformly bounded. However the representation of the resolvent
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R(n, n0) in that example is incorrect, and so we examine Example 2.1
[4] in detail :

Example 2.2. Consider the two-dimensional difference equation

(8) x(n + 1) =

[
1 (n+2)2

(n+3)

0 (n+2)3

(n+3)3

]
x(n) +

[
0 1

(n+1)2

0 0

]
x0,

where x0 = x(n0) =
[
x01

x02

]
∈ R2. The solution of (8) can be represented

in the form

x(n) = R(n, n0)x0 +
n−1∑

j=n0

R(n, j + 1)f(j)

= R(n, n0)x0 +
n∑

l=n0+1

R(n, l)f(l − 1).(9)

We compute R(n, n0) as follows : If we write x(n + 1) =
[
x1

n+1

x2
n+1

]
,

where

{
x1

n+1 = x1
n + (n+2)2

n+3 x2
n

x2
n+1 = (n+2)3

(n+3)3
x2

n,

then we have

x2
n =

n−1∏

l=n0

(l + 2)3

(l + 3)3
x02

=
(n0 + 2)3

(n0 + 3)3
· (n0 + 3)3

(n0 + 4)3
· · · (n + 1)3

(n + 2)3
=

(n0 + 2)3

(n + 2)3
x02,

x1
n+1 = x1

n +
(n + 2)2

(n + 3)
· (n0 + 2)3

(n + 2)3
x02

= x1
n +

(n0 + 2)3

(n + 3)(n + 2)
x02,

x1
01 = x01.
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In view of Lemma 2.1,

x1
n = R(n, n0)x01 +

n−1∑

j=n0

R(n, j + 1)f(j)

= x01 +
n−1∑

j=n0

(n0 + 2)3

(j + 2)(j + 3)
x02

x1
n = x01 + (n0 + 2)3x02

(
1

n0 + 2
− 1

n + 2

)

= x01 +
[
(n0 + 2)2 − (n0 + 2)3

n + 2

]
x02.

Thus we obtain

x(n) =
[
x1

n

x2
n

]
=

[
1 (n0 + 2)2 − (n0+2)3

n+2

0 (n0+2)3

(n+2)3

][
x01

x02

]
.

It follows that

R(n, n0) =

[
1 (n0 + 2)2 − (n0+2)3

n+2

0 (n0+2)3

(n+2)3

]

and it is bounded. Moreover, we get

n∑

l=n0+1

R(n, l)f(l − 1) = x02

n∑

n=n0+1

[
1
l2

0

]
≤ π2x02

[
1
0

]
.

This implies that the second addend at the right hand side of equality
(9) is uniformly bounded with respect to n0. At the same time the first
addend at right hand side of (9) is unbounded in n0 since for any k ∈ Z+,
the component

r12(kn0, n0) = (n0 + 2)2 − (n0 + 2)3

kn0 + 2

=
(

1− n0 + 2
kn0 + 2

)
(n0 + 2)2 →∞, n0 →∞.

Consequently any solution of (8) is bounded with respect to n for ar-
bitrary fixed n0. But (8) is bounded nonuniformly with respect to the
initial moment n0.
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For the boundedness of the solution of (4), Crisci et al. [4] imposed
the condition ∞∑

n=n0

n∑

j=n0

|B(n, j)| < ∞.

Also, they showed that for the scalar equation

x(n + 1) =
n∑

j=n0

an,jx(j), an,j ∈ R, n ≥ n0,

the solution x(n) satisfies
∑∞

n=n0
|x(n)| < ∞ if

∑∞
l=n0

|al+n+1,n+1| < 1.
Some important sequence spaces are the following :

lp = {x : Z+ → Rd |
∞∑

n=1

|x(n)|p < ∞}, 1 ≤ p < ∞,

l∞ = {x : Z+ → Rd | sup
n
|x(n)| < ∞}.

They are equipped with the norms

|x|p =

( ∞∑

n=1

|x(n)|p
) 1

p

, 1 ≤ p < ∞,

|x|∞ = sup
n
|x(n)|,

respectively, and are Banach spaces.

Theorem 2.3. For the equation (5), assume that the following :

(i)
∑∞

n=n0

∑n
j=n0

|B(n, j)| < ∞,

(ii) f ∈ l1,
(iii)

∑∞
n=n0

∑n
j=n0

|R(n, j)| ≤ M.

Then the solution x(n) of (5) belongs to l∞.

Proof. Using the formula (7) and the assumptions, we have

|x(n)| ≤ |R(n, n0)||x0|+
n−1∑

j=n0

|R(n, j + 1)||f(j)|

≤ M |x0|+ M |f |1
= M(|x0|+ |f |1).

This implies that |x|∞ = supn≥n0
|x(n)| < ∞.

We prove the next result which is Theorem 4.1 in [4], without using
the discrete version of the Gronwall-Bellman lemma [1].
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Theorem 2.4. For the equation

(10) y(n + 1) =
n∑

j=n0

[B(n, j) + C(n, j)]y(j), y(n0) = y0, n ≥ n0,

where C(n, j) is a d× d matrix, suppose that

(i) (4) is uniformly bounded,
(ii)

∑∞
j=n0

∑∞
n=j |C(n, j)| < ∞.

Then (10) is uniformly bounded.

Proof. The solution y(n) of (10) is given by

y(n) = R(n, n0)y0 +
n−1∑
r=n0

R(n, r + 1)
r∑

j=n0

C(r, j)y(j)

by the same manner as the proof in Lemma 2.1. From (i), |R(n, n0)| ≤ K
for some constant K > 0. Thus

u(n) ≡ |y(n)| = K


|y0|+

n−1∑
r=n0

R(n, r + 1)
r∑

j=n0

|C(r, j)||y(j)|



≤ K


|y0|+

n−1∑

j=n0

|y(j)|
n−1∑

r=j

|C(r, j)|



≡ v(n).

Note that v(n0) = K|y0|. If follows that

∆v(n) = v(n + 1)− v(n)

=
n∑

r=n0

r∑

j=n0

|C(r, j)||y(j)| −
n−1∑
r=n0

r∑

j=n0

|C(r, j)||y(j)|

=
n∑

j=n0

|C(n, j)||y(j)|

=
n∑

j=n0

|C(n, j)|u(j) ≤
n∑

j=n0

|C(n, j)|v(j).

Thus

v(n + 1) =


1 +

n∑

j=n0

|C(n, j)|

 v(n), n ≥ n0.
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Consequently, we have

|y(n)| ≤ v(n) =
n−1∏
r=n0


1 +

r∑

j=n0

|C(r, j)|



≤ exp




n−1∑
r=n0

r∑

j=n0

|C(r, j)




= exp




n−1∑

j=n0

n−1∑

r=j

|C(r, j)|

 .

It follows that (10) is uniformly bounded by (ii).

If we assume that Eq. (4) is uniformly asymptotically stable and

|B(n, j)| ≤ Mνn−j for some M > 0, 0 < ν < 1,

then there exist constants λ and γ ∈ (0, 1) such that

|R(n, j)| ≤ λγn−j , n ≥ j

[4]. Using this fact we obtain the weaker version of Theorem 4.2 in [4].
For the definitions of the various stability notions, see [1].

Theorem 2.5. Assume that

(i) (4) is uniformly asymptotically stable,
(ii) |B(n, j)| ≤ Mνn−j , M > 0, 0 < ν < 1,
(iii)

∑∞
j=n0

∑∞
n=j |C(n, j)|γj−n < ∞.

Then (10) is bounded.

Proof. We obtain

|x(n)| ≤ λγn−n0 |x0|+ λ
n−1∑
r=n0

γn−r−1
r∑

j=n0

|C(r, j)||x(j)|.

Then

q(n) ≡ |x(n)|
λn

≤ λ
|x0|
γn0

+ λ
n−1∑
r=n0

γ−r−1
r∑

j=n0

|C(r, j)| |x(j)|
γj

γj ,

q(n) ≤ λq(n0) +
n−1∑
r=n0

λ

γ

r∑

j=n0

|C(r, j)|γj−rq(j).
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Thus, by the discrete version of the Gronwall-Bellman lemma,

q(n) ≤ λq(n0) exp




n−1∑
r=n0

r∑

j=n0

λγj−r−1|C(r, j)|

 .

In view of the discrete version of the Fubini’s theorem [1], we have

|x(n)| ≤ λγn−n0 |x0| exp


λ

γ

n−1∑
r=n0

n−1∑

j=r

|C(j, r)γr−j


 .

Letting

K ≡
∞∑

j=n0

∞∑

r=j

|C(r, j)γj−r,

we get

|x(n)| ≤ λγn−n0 |x0| exp(
λ

γ
K)

= Mγn−n0 |x0|, M ≡ λ exp(
λK

γ
).

This completes the proof.

The following result concerns with the boundedness of Eq. (5) and
appeared in [4, Theorem 4.3] without the proof.

Theorem 2.6. Suppose that

(i) (4) is uniformly bounded,
(ii)

∑∞
n=n0

|f(n)| < ∞.

Then (5) is bounded.

Proof. By Lemma 2.1, the solution y(n) of (5) is given by

y(n) = R(n, n0)y0 +
n−1∑
r=n0

R(n, r + 1)f(r).

Thus we have

|y(n)| ≤ |R(n, n0)||y0|+
n−1∑
r=n0

|R(n, r + 1)||f(r)|

≤ M |y0|+ M
n−1∑
r=n0

|f(r)|
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for some M > 0 by (ii). Hence we obtain

|y(n)| ≤ M |y0|+ M
∞∑

r=n0

|f(r)| ≡ M̃(y0), n ≥ n0.

Remark 2.7. Theorem 2.6 was improved in [4, Theorem 4.4] under
the conditions

(i) (4) is uniformly asymptotically stable,
(ii) |B(n, j)| ≤ Mνn−j , M > 0, 0 < ν < 1, n ≥ j,
(iii) |f(j)| ≤ C, C > 0.
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