• Title/Summary/Keyword: repetitive sequence.

Search Result 122, Processing Time 0.029 seconds

Genetic and Phenotypic Diversity of Parathion-Degrading Bacteria Isolated from Rice Paddy Soils

  • Choi, Min-Kyeong;Kim, Kyung-Duk;Ahn, Kyong-Mok;Shin, Dong-Hyun;Hwang, Jae-Hong;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1679-1687
    • /
    • 2009
  • Three parathion-degrading bacteria and eight pairs of bacteria showing syntrophic metabolism of parathion were isolated from rice field soils, and their genetic and phenotypic characteristics were investigated. The three isolates and eight syntrophic pairs were able to utilize parathion as a sole source of carbon and energy, producing p-nitrophenol as the intermediate metabolite during the complete degradation of parathion. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Burkholderia, Arthrobacter, Pseudomonas, Variovorax, and Ensifer. The chromosomal DNA patterns of the isolates obtained by polymerasechain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences were distinct from one another. Ten of the isolates had plasmids. All of the isolates and syntrophic pairs were able to degrade parathion-related compounds such as EPN, p-nitrophenol, fenitrothion, and methyl parathion. When analyzed with PCR amplification and dot-blotting hybridization using various primers targeted for the organophosphorus pesticide hydrolase genes of previously reported isolates, most of the isolates did not show positive signals, suggesting that their parathion hydrolase genes had no significant sequence homology with those of the previously reported organosphophate pesticide-degrading isolates.

Genetic and Phenotypic Diversity of Fenitrothion-Degrading Bacteria Isolated from Soils

  • Kim, Kyung-Duk;Ahn, Jae-Hyung;Kim, Tae-Sung;Park, Seong-Chan;Seong, Chi-Nam;Song, Hong-Gyu;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Twenty-seven fenitrothion-degrading bacteria were isolated from different soils, and their genetic and phenotypic characteristics were investigated. Analysis of the 16S rDNA sequence showed that the isolates were related to members of the genera Burkholderia, Pseudomonas, Sphingomonas, Cupriavidus, Corynebacterium, and Arthrobacter. Among the 27 isolates, 12 different chromosomal DNA fingerprinting patterns were obtained by polymerase chain reaction(PCR) amplification of repetitive extra genic palindromic(REP) sequences. The isolates were able to utilize fenitrothion as a sole source of carbon and energy, producing 3-methyl-4-nitrophenol as the intermediate metabolite during the complete degradation of fenitrothion. Twenty-two of 27 isolates were able to degrade parathion, methyl-parathion, and p-nitrophenol but only strain BS2 could degrade EPN(O-ethyl-O-p-nitrophenyl phenylphosphorothioate) as a sole source of carbon and energy for growth. Eighteen of the 27 isolates had plasmids. When analyzed with PCR amplification and dot-blotting hybridization using various specific primers targeted to the organophosphorus pesticide hydrolase genes of the previously reported isolates, none of the isolates showed positive signals, suggesting that the corresponding genes of our isolates had no significant sequence homology with those of the previously isolated organophosphate pesticide-degrading bacteria.

Alternative Sigma Factor HrpL of Pectobacterium carotovorum 35 is Important for the Development of Soft-rot Symptoms

  • Nam, Hyo-Song;Park, Ju-Yeon;Kang, Beom-Ryong;Lee, Sung-Hee;Cha, Jae-Soon;Kim, Young-Cheol
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.111-120
    • /
    • 2011
  • A bacterial artificial chromosome library of Pectobacterium carotovorum 35 was constructed to characterize the genome and to sequence its hrp region. The hrp cluster of P. carotovorum 35 consisted of 26 open reading frames in five operons. A promoter-based green fluorescent protein technology was used to identify the genes regulated by the alternative sigma factor, HrpL, in P. carotovorum 35. The majority of the selected clones contained the hrpJ operon promoter sequence, which harbors a hrp box, but no putative hrp boxes were detected within the promoter sequences of two other hrpL-regulated genes encoding for pectate lyase and large repetitive protein. Although the promoters of five other hrp operons also contained hrp boxes, their expression was not HrpL-dependent in the promoter-based selection in E. coli. However, transcriptional analysis showed that expression from all operons harboring hrp boxes, except for the hrpN operon, was reduced significantly in the hrpL mutant. The severity of soft-rot symptoms when the hrpL mutant was applied to the surface of tobacco leaves, mimicking natural infection, was greatly attenuated. These results indicate that the hrpL gene of P. carotovorum 35 may be involved in the development of soft-rot symptoms.

Genetic and Phenotypic Diversity of Carbofuran-Degrading Bacteria Isolated from Agricultural Soils

  • Shin, Dong-Hyeon;Kim, Dong-Uk;Seong, Chi-Nam;Song, Hong-Gyu;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.448-456
    • /
    • 2012
  • Thirty-seven carbofuran-degrading bacteria were isolated from agricultural soils, and their genetic and phenotypic characteristics were investigated. The isolates were able to utilize carbofuran as a sole source of carbon and energy. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Rhodococcus, Sphingomonas, and Sphingobium, including new types of carbofuran-degrading bacteria, Bosea and Microbacterium. Among the 37 isolates, 15 different chromosomal DNA patterns were obtained by polymerase chain reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences. Five of the 15 representative isolates were able to degrade carbofuran phenol, fenoxycarb, and carbaryl, in addition to carbofuran. Ten of the 15 representative isolates had 1 to 8 plasmids. Among the 10 plasmid-containing isolates, plasmid-cured strains were obtained from 5 strains. The cured strains could not degrade carbofuran and other pesticides anymore, suggesting that the carbofuran degradative genes were on the plasmid DNAs in these strains. When analyzed with PCR amplification and dot-blot hybridization using the primers targeting for the previously reported carbofuran hydrolase gene (mcd), all of the isolates did not show any positive signals, suggesting that their carbofuran hydrolase genes had no significant sequence homology with the mcd gene.

Construction of a Bacterial Artificial Chromosome Library Containing Large BamHI Genomic Fragments from Medicago truncatula and Identification of Clones Linked to Hypernodulating Genes

  • Park So-Yeon;Nam Young-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.256-263
    • /
    • 2006
  • In the model legume Medicago truncatula, two mutants, sickle and sunn, exhibit morphologically and genetically distinct hypernodulation phenotypes. However, efforts to isolate the single recessive and single semidominant genes for sickle and sunn, respectively, by map-based cloning have so far been unsuccessful, partly due to the absence of clones that enable walks from linked marker positions. To help resolve these difficulties, a new bacterial artificial chromosome (BAC) library was constructed using BamHI-digested genomic fragments. A total of 23,808 clones were collected from ligation mixtures prepared with double-size-selected high-molecular-weight DNA. The average insert size was 116 kb based on an analysis of 88 randomly selected clones using NotI digestion and pulsed-field gel electrophoresis. About 18.5% of the library clones lacked inserts. The frequency of the BAC clones carrying chloroplast or mitochondrial DNA was 0.98% and 0.03%, respectively. The library represented approximately 4.9 haploid M. truncatula genomes. Hybridization of the BAC clone filters with a $C_{0}t-l$ DNA probe revealed that approximately 37% of the clones likely carried repetitive sequence-enriched DNA. An ordered array of pooled BAC DNA was screened by polymerase chain reactions using 13 sequence-characterized molecular markers that belonged to the eight linkage groups. Except for two markers, one to five positive BAC clones were obtained per marker. Accordingly, the sickle- and sunn-linked BAC clones identified herein will be useful for the isolation of these biotechnologically important genes. The new library will also provide clones that fill the gaps between preexisting BAC contigs, facilitating the physical mapping and genome sequencing of M. truncatula.

Spread of CTX-M Extended-spectrum β-lactamase Producing Escherichia coli in the Community in Chungcheong Area, Korea

  • Sung, Ji Youn;Oh, Ji-Eun;Kim, Eun Sun;Son, Ja Min;Kim, Hye Yeon;Lim, Da Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.2
    • /
    • pp.43-47
    • /
    • 2013
  • This study was designed to evaluate the prevalence of ESBL genes and monitor antimicrobial resistance pattern in Escherichia coli, isolated from a hospital and a community. We tested 200 E. coli strains isolated in the hospitals and community in Chungcheong area from January to March 2012. Antimicrobial susceptibilities were tested by using the disk diffusion method. A search for ESBL genes was conducted by PCR amplification, and the genotypes were determined by direct nucleotide sequence analysis of the amplified products. An Epidemiologic study was performed by repetitive extragenic palindromic sequence-based PCR (REP-PCR). The percentage of ESBL-producing isolates was 17% for hospital associated E. coli and 11% for community associated E. coli. The ESBL gene sequencing results showed that the most common ESBL in E. coli was CTX-M-14 (19/28), followed by CTX-M-15 (9/28). The REP-PCR study also showed the genetic diversity, but there was no difference between the hospital and community associated E. coli. In this study, the most common types of class A ESBLs identified were CTX-M in the hospital and the community in Chungcheong area. ESBL-producing E. coli isolates showed diverse clonality.

  • PDF

Genetic Diversity and Population Structure of the Xanthomonas campestris pv. campestris Strains Affecting Cabbages in China Revealed by MLST and Rep-PCR Based Genotyping

  • Chen, Guo;Kong, Congcong;Yang, Limei;Zhuang, Mu;Zhang, Yangyong;Wang, Yong;Ji, Jialei;Fang, Zhiyuan;Lv, Honghao
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.476-488
    • /
    • 2021
  • Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.

DNA Methylation Change of Repeats Sequences in Pig SCNT Embryos Produced under Different Osmolarity Culture Conditions (삼투압 배양 조건에 따른 돼지 체세포 복제 배반포에서 Repeats 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Yang, Byoung-Chul;Hwang, Seong-Soo;Lee, Hwi-Cheul;Lee, Poong-Yeon;Cho, Chang-Yeon;Choi, Sun-Ho;Yoo, Young-Hee
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.181-184
    • /
    • 2010
  • Osmolarity of culture media is one of the most important factors affecting in vitro development. This study was conducted to investigate the DNA methylation status of Pre-1 and satellite sequence in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaG or 0.05M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. Previous our studies have reported that pNT embryos cultured in both hypertonic media showed significantly higher blastocyst formation rate than that of control. The DNA methylation status of the satellite sequences in blastocyst was characterized using bisulfite-sequencing technology. The satellite region had a similar methylation pattern of in vivo blastocyst among two culture groups excepting the control group. Each level of methylation is that the satellite DNA moderately methylated (43.10% of PZM-3; 56.12% of NaCl; 55.06% of sucrose; 60.00% of in vivo embryos). As a result of the sequence of PRE-1, CpG methylation pattern was similar to three groups, including in vivo group. In case of the satellite DNA region, the osmolarity conditions were affected CpG DNA methylation status while PRE-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. These results indicate that the modification of osmolarity in a culture media may influence to spatially change of DNA methylation of repetitive sequence for pNT embryo development.

Identification of hRad21-Binding Sites in Human Chromosome

  • Chin Chur;Chung Byung-Seon
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • The aim of this study is to identify hRad21-binding sites in human chromosome, the core component of cohesin complex that held sister chromatids together. After chromatin immunoprecipitation with an hRad21 antibody, it was cloned the recovered DNA and sequenced 30 independent clones. Among them, 20 clones (67%) contained repetitive elements including short interspersed transposable elements (SINE or Alu elements), long terminal repeat (LTR) and long interspersed transposable elements (LINE), fourteen of these twenty (70%) repeats clones had Alu elements, which could be categorized as the old and the young Alu Subfamily, eleven of the fourteen (73%) Alu elements belonged to the old Alu Subfamily, and only three Alu elements were categorized as young Alu subfamily. There is no CpG island within these selected clones. Association of hRad21 with Alu was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. The primers were designed in the flanking region of Alu, and the specific Alu element was shown in the selected clone. From these experiments, it was demonstrated that hRad21 could bind to SINE, LTRs, and LINE as well as Alu.

Replicative Senescence in Cellular Aging and Oxidative Stress (세포 노화에 있어서 복제 세네센스 현상과 산화적 스트레스의 영향)

  • 박영철
    • Toxicological Research
    • /
    • v.19 no.3
    • /
    • pp.161-172
    • /
    • 2003
  • Explanted mammalian cells perform a limited number of cell division in vitro and than are arrested in a state known as replicative senescence. Such cells are irreversibly blocked, mostly in the G1 phase of cell cycle, and are no longer sensitive to growth factor stimulation. Thus replicative senescence is defined as a permanent and irreversible loss of replicative potential of cells. For this characteristic, replicative senescence seems to evolve to protect mammalian organism from cancer. However, senescence also contributes to aging. It seems to decrease with age of the cell donor and, as a form of cell senescence, is thought to underlie the aging process. Extensive evidence supports the idea that progressive telomere loss contributes to the phenomenon of cell senescence. Telomeres are repetitive structures of the sequence (TTAGGG)n at the ends of linear chromosomes. It has been shown that the average length of telomere repeats in human somatic cells decreases by 30∼200 bp with each cell division. It is generally believed that when telomeres reach a critical length, a signal is activated to initiate the senescent program. This has given rise to the hypothesis that telomeres act as mitotic clocks to regulate lifespan. One proposes that cumulative oxidative stress, mainly reactive oxygen species generated from mitochondria, may mainly cause telomere shortening, accelerating aging. Here, the biological importance and mechanism of replicative senescence were briefly reviewed. Also it was summarized that how oxidative stress affects replicative senescence and telomere shortening.