Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2021.0088

Genetic Diversity and Population Structure of the Xanthomonas campestris pv. campestris Strains Affecting Cabbages in China Revealed by MLST and Rep-PCR Based Genotyping  

Chen, Guo (Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University)
Kong, Congcong (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences)
Yang, Limei (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences)
Zhuang, Mu (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences)
Zhang, Yangyong (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences)
Wang, Yong (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences)
Ji, Jialei (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences)
Fang, Zhiyuan (Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University)
Lv, Honghao (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences)
Publication Information
The Plant Pathology Journal / v.37, no.5, 2021 , pp. 476-488 More about this Journal
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.
Keywords
black rot; cabbage; diversity; MLST; rep-PCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, M. and Spratt, B. G. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U. S. A. 95:3140-3145.   DOI
2 Restrepo, S., Duque, M., Tohme, J. and Verdier, V. 1999. AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis. Microbiology 145:107-114.   DOI
3 Versalovic, J., Koeuth, T. and Lupski, J. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19:6823-6831.   DOI
4 Williams, P. H. 1980. Black rot: a continuing threat to world crucifers. Plant Dis. 64:736-742.   DOI
5 Cruz, J., Tenreiro, R. and Cruz, L. 2017. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J. Plant Pathol. 99:403-414.
6 Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M., Alloing, G., Hakenbeck, R., Morrison, D., Boulnois, G. and Claverys, J.-P. 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20:3479-3483.   DOI
7 Lema, M., Cartea, M. E., Sotelo, T., Velasco, P. and Soengas, P. 2011. Discrimination of Xanthomonas campestris pv. campestris races among strains from northwestern Spain by Brassica spp. genotypes and rep-PCR. Eur. J. Plant Pathol. 133:159-169.   DOI
8 Librado, P. and Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 11:1451-1452.   DOI
9 Lu, Y., Zhang, L. G., Hui, M. X. and Zhang, M. K. 2008. Study on pathotypes of black rot of chinese cabbage in Shaanxi Province. J. Northwest Agric. For. Univ. 10:132-138 (in Chinese).
10 Lv, H., Fang, Z., Yang, L., Zhang, Y. and Wang, Y. 2020. An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. Hortic. Res. 7:34.   DOI
11 Pammel, L. H. 1895. Bacteriosis of Rutabaga (Bacillus campestris n. sp.). Iowa State Coll. Agric. Exp. Stn. Bull. 27:130-134.
12 Popovic, T., Mitrovic, P., Jelusic, A., Dimkic, I., Marjanovic-Jeromela, A., Nikolic, I. and Stankovic, S. 2019. Genetic diversity and virulence of Xanthomonas campestris pv. campestris isolates from Brassica napus and six Brassica oleracea crops in Serbia. Plant Pathol. 68:1448-1457.   DOI
13 Rathaur, P. S., Singh, D., Raghuwanshi, R. and Yadava, D. K. 2015. Pathogenic and genetic characterization of Xanthomonas campestris pv. campestris races based on rep-PCR and multilocus sequence analysis. J. Plant Pathol. Microbiol. 6:317.
14 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.   DOI
15 Goncalves, E. R. and Rosato, Y. B. 2002. Phylogenetic analysis of Xanthomonas species based upon 16S-23S rDNA intergenic spacer sequences. Int. J. Syst. Evol. Microbiol. 52:355-361.   DOI
16 Garces, F., Gutierrez, A. and Hoy, J. 2014. Detection and quantification of Xanthomonas albilineans by qPCR and potential characterization of sugarcane resistance to leaf scald. Plant Dis. 98:121-126.   DOI
17 Urwin, R. and Maiden, M. C. J. 2003. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11:479-487.   DOI
18 Versalovic, J., Schneider, M., de Bruijn, F. J. and Lupski, J. R. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5:25-40.
19 Vicente, J. G., Conway, J., Roberts, S. J. and Taylor, J. D. 2001. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492-499.   DOI
20 Zhang, Y., Li, P. J., Zhou, H. M. and Li, B. J. 2011. The occurrence and prevention of bacterial black rot of cruciferous vegetables by Dr. Li Baoju. China Veg. 17:23-25 (in Chinese).
21 Muhire, B., Varsani, A. and Martin, D. P. 2014. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277.   DOI
22 Rademaker, J. L., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterin, L., Vauterin, P. and de Bruijn, F. J. 2000. Comparison of AFLP and rep-PCR genomic fingerprinting with DNADNA homology studies: Xanthomonas as a model system. Int. J. Syst. Evol. Microbiol. 50:665-677.   DOI
23 Gao, X., Zhou, Z., Zhao, Z., Qin, H. and Huang, L. 2016. RepPCR analysis of genotypic diversity of Pseudomonas syringae pv. actinidiae strains from Shaanxi province of China. J. Fruit Sci. 33:340-349.
24 Ntambo, M. S., Meng, J.-Y., Rott, P. C., Royer, M., Lin, L.-H., Zhang, H.-L. and Gao, S.-J. 2019. Identification and characterization of Xanthomonas albilineans causing sugarcane leaf scald in China using multilocus sequence analysis. Plant Pathol. 68:269-277.   DOI
25 Rademaker, J. L. W. and De Bruijn, F. J. 1997. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer-assisted pattern analysis. In: DNA markers: protocols, applications and overviews, eds. By G. Caetano-Anolles and P. M. Gresshoff, pp. 151-171. John Wiley & Sons, Hoboken, NJ, USA.
26 Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Bruijn, F. J. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60:2286-2295.   DOI
27 Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. and Carniel, E. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. U. S. A. 96:14043-14048.   DOI
28 Ah-You, N., Gagnevin, L., Grimont, P. A. D., Brisse, S., Nesme, X., Chiroleu, F., Ngoc, L. B. T., Jouen, E., Lefeuvre, P., Verniere, C. and Pruvost, O. 2009. Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiaceae and their relatedness to species of Xanthomonas. Int. J. Syst. Evol. Microbiol. 59:306-318.   DOI
29 Enright, M. C. and Spratt, B. G. 1998. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 144:3049-3060.   DOI
30 Fargier, E. and Manceau, C. 2007. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 56:805-818.   DOI
31 Hauben, L., Vauterin, L., Swings, J. and Moore, E. R. 1997. Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int. J. Syst. Bacteriol. 47:328-335.   DOI
32 Jensen, B. D., Vicente, J. G., Manandhar, H. K. and Roberts, S. J. 2010. Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable Brassica fields in Nepal. Plant Dis. 94:298-305.   DOI
33 Jiang, H., Dong, H., Zhang, G., Yu, B., Chapman, L. R. and Fields, M. W. 2006. Microbial diversity in water and sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Appl. Environ. Microbiol. 72:3832-3845.   DOI
34 Kong, C., Chen, G., Yang, L., Zhuang, M., Zhang, Y., Wang, Y., Ji, J., Fang, Z. and Lv, H. 2021. Germplasm screening and inheritance analysis of resistance to cabbage black rot in a worldwide collection of cabbage (Brassica oleracea var. capitata) resources. Sci. Hortic. 288:110234.   DOI
35 Bella, P., Moretti, C., Licciardello, G., Strano, C. P., Pulvirenti, A., Alaimo, S., Zaccardelli, M., Branca, F., Buonaurio, R., Vicente, J. G. and Catara, V. 2019. Multilocus sequence typing analysis of Italian Xanthomonas campestris pv. campestris strains suggests the evolution of local endemic populations of the pathogen and does not correlate with race distribution. Plant Pathol. 68:278-287.   DOI
36 Fargier, E., Fischer-Le Saux, M. and Manceau, C. 2011. A multilocus sequence analysis of Xanthomonas campestris reveals a complex structure within crucifer-attacking pathovars of this species. Syst. Appl. Microbiol. 34:156-165.   DOI
37 Hyytia-Trees, E., Lyhs, U., Korkeala, H. and Bjorkroth, J. 1999. Characterisation of ropy slime-producing Lactobacillus sakei using repetitive element sequence-based PCR. Int. J. Food Microbiol. 50:215-219.   DOI