Browse > Article
http://dx.doi.org/10.5423/RPD.2011.17.2.111

Alternative Sigma Factor HrpL of Pectobacterium carotovorum 35 is Important for the Development of Soft-rot Symptoms  

Nam, Hyo-Song (Bio Control Center, Jeonnam Bioindustry Foundation)
Park, Ju-Yeon (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kang, Beom-Ryong (Jeonnam Agricultural Extension Service Center)
Lee, Sung-Hee (Chungbuk Agricultural Research and Extension Services)
Cha, Jae-Soon (Department of Agricultural Medicine, Choongbuk National University)
Kim, Young-Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Publication Information
Research in Plant Disease / v.17, no.2, 2011 , pp. 111-120 More about this Journal
Abstract
A bacterial artificial chromosome library of Pectobacterium carotovorum 35 was constructed to characterize the genome and to sequence its hrp region. The hrp cluster of P. carotovorum 35 consisted of 26 open reading frames in five operons. A promoter-based green fluorescent protein technology was used to identify the genes regulated by the alternative sigma factor, HrpL, in P. carotovorum 35. The majority of the selected clones contained the hrpJ operon promoter sequence, which harbors a hrp box, but no putative hrp boxes were detected within the promoter sequences of two other hrpL-regulated genes encoding for pectate lyase and large repetitive protein. Although the promoters of five other hrp operons also contained hrp boxes, their expression was not HrpL-dependent in the promoter-based selection in E. coli. However, transcriptional analysis showed that expression from all operons harboring hrp boxes, except for the hrpN operon, was reduced significantly in the hrpL mutant. The severity of soft-rot symptoms when the hrpL mutant was applied to the surface of tobacco leaves, mimicking natural infection, was greatly attenuated. These results indicate that the hrpL gene of P. carotovorum 35 may be involved in the development of soft-rot symptoms.
Keywords
BAC end sequencing; Bacterial genomics; Hypersensitive and pathogenicity genes; Promoter-based expression technology; Soft-rot disease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wei, Z. M., Kim, J. F. and Beer, S. V. 2000. Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS. Mol. Plant-Microbe Interact. 13: 1251-1262.   DOI
2 Xiao, Y. and Hutcheson, S. W. 1994. A single promoter sequence recognized by newly identified alternative sigma factor direct expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol. 176: 3089-3091.   DOI
3 Yang, S., Perna, N. T., Cooksey, D. A., Okinaka, Y., Lindow, S. E., Ibekwe, A. M., Keen, N. T. and Yang, C.-H. 2004. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol. Plant-Microbe Interact. 9: 999-1008.
4 Miller, W. G., Leveau, J. H. J. and Lindow, S. E. 2000. Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant-Microbe Interact. 13: 1243-1250.   DOI
5 Glasner, J. D., Marquez-Villavicenco, M., Kim, H.-S., Jahn, C. E., Ma, B., Biehl, B. S., Rissman, A. I., Mole, B., Yi, X., Yang, C.-H., Dangl, J. L., Grant, S. R., Perna, N. T. and Charkowski, A. O. 2008. Niche-specificity and the variable fraction of the Pecotobacterium pan-genome. Mol. Plant-Microbe Interact. 21: 1549-1560.   DOI
6 Huynh, T. V., Dahlbeck, D. and Staskawicz, B. J. 1989. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374-1377.   DOI
7 Lehtimaki, S., Rantakari, A., Routtu, J., Tuikkala, A., Li, J., Virtaharju, O., Palva, E. T., Romantschuk, M. and Saarilahti, H. T. 2003. Characterization of the hrp pathogenicity cluster of Erwinia carotovora subsp. carotovora: high basal level expression in a mutant is associated with reduced virulence. Mol. Gen. Genom. 270: 263-272.   DOI
8 Livak, J. K. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT$ method. Methods 25: 402-408.   DOI
9 Ma, Z., Weining, S., Sharp, P. J. and Liu, C. J. 2000. Non-gridded library: a new approach for bacterial artificial chromosome (BAC) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Res. 2: e106.
10 Murata, H., McEvoy, J. L., Chatterjee, A., Collmer, A. and Chatterjee, A. K. 1991. Molecular cloning of an aepA gene that activates production of extracellular pectolytic, cellulolytic, and proteolytic enzymes in Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 4: 239-246.   DOI
11 Nissan, G., Manulis, S., Weinthal, D. M., Sessa, G. and Barash, I. 2005. Analysis of promoters recognized by HrpL, an alternative σ-factor protein from Pantoea agglomerans pv. gypsophilae. Mol. Plant-Microbe Interact. 18: 634-643.   DOI
12 Chatterjee, A. K., Thurn, K. K. and Tyrell, D. J. 1985. Isolation and characterization of Tn5 insertion mutants of Erwinia chrysanthemi that are deficient in polygalacturonate catabolic enzymes oligogalacturonate lyase and 3-deoxy-D-glycero- 2,5-hexodiulosonate dehydrogenase. J. Bacteriol. 162: 708-714.
13 Chatterjee, A., Ciu, Y. and Chatterjee, A. K. 2002. Regulation of Erwinia carotovora hrpLEcc (sigma-LEcc), which encodes an extracytoplasmic function subfamily of sigma factor required for expression of the HRP regulon. Mol. Plant-Microbe Interact. 15: 971-980.   DOI
14 Collmer, A. and Keen, N. T. 1986. The role of the pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24: 383-409.   DOI
15 Del Sal, G., Manfioletti, G. and Schneider, C. 1989. The CTABDNA precipitation method: A common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. BioTechniques 7: 514-520.
16 Andro, T., Chambost, J.-P., Kotoujansky, A., Cattaneo, J., Bertheau, Y., Barras, F., Van Gijsegem, F. and Coleno, A. 1984. Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulose. J. Bacteriol. 160: 1199-1203.
17 Elhai, J. and Wolk, C. P. 1988. A versatile class of positive selection vectors based on the nonviability of palindrome containing plasmids that allows cloning into long polylinkers. Gene 68: 119-138.   DOI
18 Fouts, D. E., Abramovitch, R. B., Alfano, J. R., Baldo, A. M., Buell, C. R., Cartinhour, S., Chatterjee, A. K., D'Ascenzo, M., Gwinn, M. L., Lazarowitz, S. G., Lin, N. C., Martin, G. B., Rehm, A. H., Schneider, D. J., van Dijk, K., Tang, X. Y. and Collmer, A. 2002. Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA. 99: 2275-2280.   DOI
19 Frederick, R. D., Ahmad, M., Majerczak, D. R., Arroyo- Rodriguez, A. S., Manulis, S. and Coplin, D. L. 2001. Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Mol. Plant-Microbe Interact. 14: 1213-1222.   DOI
20 Antonarakis, S. E. 2001. BAC king up the promises. Nature Genet. 27: 230-232.   DOI
21 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1989. Current Protocols in Molecular Biology, John Wiley and Sons, New York.
22 Barras, F., Thurn, K. K. and Chatterjee, A. K. 1987. Resolution of four pectate lyase structural genes of Erwinia chrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli. Mol. Gen. Genet. 209: 319-325.   DOI
23 Chang, J. H., Urbach, J. M., Law, T. F., Arnold, L. W., Hu, A., Gombar, S., Grant, S. R., Ausubel, F. M. and Dangl, J. L. 2005. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. USA. 102: 2549-2554.   DOI
24 Bell, K. S., Avrova, A. O., Holeva, M. C., Cardle, L., Morris, W., Jong, W. D., Toth, I. K., Waugh, B., Bryan, G. J. and Birch, P. R. J. 2002. Sample sequencing of a selected region of the genome of Erwinia carotovora subsp. atroseptica reveals candidate phytopathogenicity genes and allows comparison with Escherichia coli. Microbiol. 148: 1367-1378.   DOI
25 Bell, K. S., Sebaihia, M., Pritchard, L., Holden, M. T. G., Hyman, L. J., Holeva, M. C., Thomson, N. R., Bentley, S. D., Churcher, L. J. C., Mungall, K., Atkin, R., Bason, N., Brooks, K., Chillingworth, T., Clark, K., Doggett, J., Fraser, A., Hance, Z., Hauser, H., Jagels, K., Moule, S., Norbertczak, H., Ormond, D., Price, C., Quail, M. A., Sanders, M., Walker, D., Whitehead, S., Salmond, G. P. C., Birch, P. R. J., Parkhill, J. and Toth, I. K. 2004. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl. Acad. Sci. USA. 101: 11105-11110.   DOI
26 Birnboim, H. C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.   DOI
27 Sambrook, J., Frithsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
28 Zhang, H. B. and Wing, R. A. 1997. Physical mapping of the rice genome with BACs. Plant Mol. Biol. 35: 115-127.   DOI
29 Perombelon, M. C. M. and Salmond, G. P. C. 1995. Bacterial soft rots. In : Pathogenesis and Host Specificity in Plant Diseases, ed. by U. S. Singh, R. P. Singh and K. Kohmoto, Vol. 1, pp. 1-7, Oxford: Pergamon Press.
30 Rantakari, A., Virtaharju, O., Vahamiko, S., Taira, S., Palva, E. T., Saarilahti, H. T. and Romantschuk, M. 2001. Type III secretion contributes to the pathogenesis of the soft-rot pathogen Erwinia carotovora: partial characterization of the hrp gene cluster. Mol. Plant-Microbe Interact. 14: 962-968.   DOI
31 Shi, X.-Y. and Cooksey, D. A. 2009. Identification of hrpL up-regulated genes of Dickeya dadantii. Eur. J. Plant Pathol. 124: 105-116.   DOI
32 Shin, Y.-J. 2004. Biological control of soft rot of Chinese cabbage by a bacteriocin-producing avirulent mutant of Erwinia carotovora subsp. carotovora. MS thesis. Chungbuk National University.
33 Wei, Z. M. and Beer, S. V. 1995. hrpL activites Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J. Bacteriol. 177: 6201-6210.   DOI