Browse > Article
http://dx.doi.org/10.4014/jmb.0905.05057

Genetic and Phenotypic Diversity of Parathion-Degrading Bacteria Isolated from Rice Paddy Soils  

Choi, Min-Kyeong (Department of Agricultural Biotechnology, Seoul National University)
Kim, Kyung-Duk (Department of Agricultural Biotechnology, Seoul National University)
Ahn, Kyong-Mok (Department of Agricultural Biotechnology, Seoul National University)
Shin, Dong-Hyun (Department of Agricultural Biotechnology, Seoul National University)
Hwang, Jae-Hong (Department of Agricultural Biotechnology, Seoul National University)
Seong, Chi-Nam (Department of Biology, Sunchon National University)
Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.12, 2009 , pp. 1679-1687 More about this Journal
Abstract
Three parathion-degrading bacteria and eight pairs of bacteria showing syntrophic metabolism of parathion were isolated from rice field soils, and their genetic and phenotypic characteristics were investigated. The three isolates and eight syntrophic pairs were able to utilize parathion as a sole source of carbon and energy, producing p-nitrophenol as the intermediate metabolite during the complete degradation of parathion. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Burkholderia, Arthrobacter, Pseudomonas, Variovorax, and Ensifer. The chromosomal DNA patterns of the isolates obtained by polymerasechain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences were distinct from one another. Ten of the isolates had plasmids. All of the isolates and syntrophic pairs were able to degrade parathion-related compounds such as EPN, p-nitrophenol, fenitrothion, and methyl parathion. When analyzed with PCR amplification and dot-blotting hybridization using various primers targeted for the organophosphorus pesticide hydrolase genes of previously reported isolates, most of the isolates did not show positive signals, suggesting that their parathion hydrolase genes had no significant sequence homology with those of the previously reported organosphophate pesticide-degrading isolates.
Keywords
Parathion-degrading bacteria; parathion; diversity; organophosphorus insecticide; syntrophic metabolism;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410   PUBMED   ScienceOn
2 Horne, I., T. D. Stherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott. 2002. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3372-3376   DOI   ScienceOn
3 Kim, K. D., J. H. Ahn, T. S. Kim, S. C. Park, C. N. Seong, H. G. Song, and J. O. Ka. 2009. Genetic and phenotypic diversity of fenitrothion-degrading bacteria isolated from soils. J. Microbiol. Biotechnol. 19: 113-120   과학기술학회마을   DOI   ScienceOn
4 Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383   과학기술학회마을   ScienceOn
5 Korea Crop Protection Association. 2005. Agrochemical Year Book 2005
6 Park, I. H. and J. O. Ka. 2003. Isolation and characterization of 4-(2,4-dichlorophenoxy) butyric acid-degrading bacteria from agricultural soil. J. Microbiol. Biotechnol. 13: 243-250   ScienceOn
7 Ragnardottir, K. V. 2000. Environmental fate and toxicology of organophosphate pesticides. J. Geol. Soc. London 157: 859-879   DOI   ScienceOn
8 Siddavattam, D., K. Syed, B. Manavathi, S. B. Pakala, and M. Merrick. 2003. Transposon-like organization of the plasmidborne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Appl. Environ. Microbiol. 69: 2533-2539   DOI   ScienceOn
9 Sender, C. M., D. T. Gibson, D. M. Munnecke, and J. H. Lancaster. 1982. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl. Environ. Microbiol. 37: 886-891   ScienceOn
10 Horne, I., R. L. Harcourt, T. D. Sutherland, R. J. Russell, and J. G. Oakesshott. 2002. Identification of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol. Lett. 206: 51-55   DOI   ScienceOn
11 Siddaramappa, R., K. P. Rajaram, and N. Sethunathan. 1973. Degradation of parathion by bacteria isolated from flooded soil. Am. Soc. Microbiol. 26: 846-849
12 Li, X., J. He, and S. Li. 2007. Isolation of a chlorpyrifosdegrading bacterium, Sphingomonas sp. Dsp-2, and cloning of the mpd gene. Res. Microb. 158: 143-149   DOI   ScienceOn
13 Rani, N. L. and D. Lalithakumari. 1994. Degradation of methyl parathion by Pseudomonas putida. Can. J. Microbiol. 40: 1000-1006   DOI   ScienceOn
14 Barles, R. W., C. G. Daughton, and D. P. H. Hsieh. 1979. Accelerated parathion degradation in soil inoculated with acclimated bacteria under field conditions. Environ. Contamin. Toxicol. 8: 647-660   DOI   ScienceOn
15 Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England
16 Park, H. D. and J. O. Ka. 2003. Genetic and phenotypic diversity of dichlorprop-degrading bacteria isolated from soil. J. Microbiol. 41: 7-15
17 Ohshiro, K., T. Kakuta, N. Nikaidou, T. Watanabe, and T. Uchiyama. 1999. Molecular cloning and nucleotide sequencing of organophosphorus insecticide hydrolase gene from Arthrobacter sp. strain B-5. J. Biosci. Bioeng. 87: 531-534   DOI   ScienceOn
18 Kim, T. S., J. H. Ahn, M. K. Choi, H. Y. Weon, M. S. Kim, C. N. Seong, H. G. Song, and J. O. Ka. 2007. Cloning and expression of a parathion hydrolase gene from a soil bacterium, Burkholderia sp. JBA3. J. Microbiol. Biotechnol. 17: 1890-1893   과학기술학회마을   PUBMED   ScienceOn
19 Singh, B. K. and A. Walker. 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 30: 428-471   DOI   ScienceOn
20 Cheng, T. C., S. P. Harvey, and A. N. Stroup. 1993. Purification and properties of a highly active organophosphorus acid hydrolase from Alteromonas undina. Appl. Environ. Microbiol. 59: 3138-3140   PUBMED   ScienceOn
21 Qing, H., Z. Zhang, Y. Hong, and S. Li. 2007. A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int. Biodeterior. Biodegrad. 59: 55-61   DOI   ScienceOn
22 Hardy, K. G. 1993. Plasmid: A Practical Approach, pp. 99-100. 2nd Ed. Oxford University Press, Walton Street, New York
23 Tago, K., E. Sekiya, A. Kiho, C. Katsuyama, Y. Hoshito, N. Yamada, K. Hirano, H. Sawada, and M. Hayatsu. 2006. Diversity of fenitrothion-degrading bacteria in soil from distant geographical areas. Microbes Environ. 21: 58-64   DOI   ScienceOn
24 de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180-2187   PUBMED   ScienceOn
25 Nelson, L. M. 1982. Biologically induced hydrolysis of parathion in soil: Isolation of hydrolyzing bacteria. Soil Biol. Biochem. 14: 219-222   DOI   ScienceOn
26 EPA. 2000. http://www.epa.gov/REDs/factsheets/p155fct.pdf
27 Hynes, M. F., R. Simon, and A. Puhler. 1985. The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid 13: 99-105   DOI   ScienceOn
28 Nelson, L. M., B. Yaron, and P. H. Nye. 1982. Biologically induced hydrolysis of parathion in soil: Kinetics and modeling. Soil Biol. Biochem. 14: 223-228   DOI   ScienceOn
29 Munnecke, D. M. and D. P. H. Hsieh. 1975. Pathways of microbial metabolism of parathion. Am. Soc. Microb. 31: 63-69   ScienceOn
30 Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, et al. 2005. Molecular and cultivation-based characterization of bacterial structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093   ScienceOn
31 McConnell, R., F. Pachecob, K. Wahlberg, W. Klein, O. Malespin, R. Magnotti, M. Akerblom, and D. Murray. 1999. Subclinical health effects of environmental pesticide contamination in a developing country: Cholinesterase depression in children. Environ. Res. 81: 87-91   DOI   ScienceOn
32 Ahn, J. H., M. C. Kim, H. C. Shin, M. K. Choi, S. S. Yoon, T. S. Kim, H. G. Song, G. H. Lee, and J. O. Ka. 2006. Improvement of PCR amplification bias for community structure analysis of soil bacteria by denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 16: 1561-1569   과학기술학회마을   ScienceOn
33 Hayatsu, M., M. Hirano, and S. Tokuda. 2000. Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl. Environ. Microbiol. 66: 1737-1740   DOI   ScienceOn
34 Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr., P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28(1): 173-174   DOI   ScienceOn
35 Dumas, D. P., S. R. Caldwell, J. R. Wild, and F. M. Raushel. 1989. Purification and properties of phosphotriesterase from Pseudomonas diminuta. J. Biol. Chem. 264: 19659-19665   PUBMED