Browse > Article

Identification of hRad21-Binding Sites in Human Chromosome  

Chin Chur (Department of Biochemistry and Molecular Biology, College of Medicine, Pusan National University)
Chung Byung-Seon (Department of Biochemistry and Molecular Biology, College of Medicine, Pusan National University)
Abstract
The aim of this study is to identify hRad21-binding sites in human chromosome, the core component of cohesin complex that held sister chromatids together. After chromatin immunoprecipitation with an hRad21 antibody, it was cloned the recovered DNA and sequenced 30 independent clones. Among them, 20 clones (67%) contained repetitive elements including short interspersed transposable elements (SINE or Alu elements), long terminal repeat (LTR) and long interspersed transposable elements (LINE), fourteen of these twenty (70%) repeats clones had Alu elements, which could be categorized as the old and the young Alu Subfamily, eleven of the fourteen (73%) Alu elements belonged to the old Alu Subfamily, and only three Alu elements were categorized as young Alu subfamily. There is no CpG island within these selected clones. Association of hRad21 with Alu was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. The primers were designed in the flanking region of Alu, and the specific Alu element was shown in the selected clone. From these experiments, it was demonstrated that hRad21 could bind to SINE, LTRs, and LINE as well as Alu.
Keywords
hRad21 cohesin repeated element; Alu; SINE; LINE; LTR; ChIP; sequence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kagansky, A, Freeman, L., Lukyanov, D., and Strunnikov, A (2004). Histone tail independent chromatin binding activity of recombinant cohesion holocompiex. J. BioI. Chem. 279, 3382-3388   DOI
2 Hogue, M.T.and Ishikawa, F. (2002). Cohesindefectslead to premature sister chromatid separation, kinetochore dysfunction, andspindle-assembly checkpoint activation. J. BioI. Chem. 277, 42306-42314   DOI   ScienceOn
3 Pati, D., Zhang, N., and Pion, S.E. (2002). Linking sister chromatid cohesion and apoptosis: role of Rad21. Mol. Cell Biol. 22, 8267-8277   DOI
4 Presscott, L., Deininger, B., Batzer, M.A. (2002). Mammalian Retroelements., Genome Res. 12, 1455-1465   DOI   ScienceOn
5 Hakimi, M.A., Bochar, D.A., Schmiesing, J.A., Dong, Y., Barak, O.G., Speicher, D.W., Yokomori, K., and Shiekhatter, R. (2002). A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418, 994-998   DOI   ScienceOn
6 Kondo, Y. and Issa, J.P. (2003). Enrichment for histone H3 lysine methylation at Alu repeatsin Humancells. J. BioI. Chem. 278, 27658-27662   DOI   ScienceOn
7 Strom, L., Lindroos, H.B., Shirahige, K., and Sjogren, C. (2005). Postreplicative recruitment cohesion to doublestrand breaks required for DNA repair. Mol. Cell 6, 1003-1015
8 Lehmann, A.R. (2005). The role of SMC proteins in the responses to DNA damage. DNA Repair 4, 309-314   DOI   ScienceOn
9 Xu, H., Beasley, M., Erschoor, S., Inselman, A., Handel, M.A., and Mckay, M.J. (2004). A new role for the mitotic Rad21/Sccl cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO J. 5, 378-384   DOI   ScienceOn
10 Nasmyth, K. and Haering, C.H. (2005). The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595-648   DOI   ScienceOn
11 Uhlmann, F. (2004). The mechanism of sister chromatid cohesion. Exp. Cell Res. 296, 80-85   DOI   ScienceOn
12 Jessberger, R. (2002). The many functionsof SMC proteins in chrmosome dynamics. Nat. Rev. Mol. Cell BioI. 3, 767-378   DOI   ScienceOn
13 Huang, C.E., Milutinovich, M., Koshland, D. (2005). Rings, bracelet or snaps: fashionable alternatives for Srnc complexes. PhiloS. Trans R. Soc. Land. B. BioI. Sci. 3160, 537-542
14 Hirano, T. (2005). SMC proteins and chromosome mechanics: from bacteria to humans. Philos. Trans, R. Soc. Land. B. BioI. Sci. 360, 507-514   DOI   ScienceOn
15 Marston, A.L., Tham,W.H., Shah, H., and Amon, A (2003). A gennome-wide screen identifies genes required for centromeric cohesion. Science 303, 1367-1370   DOI   ScienceOn
16 Morrison, C., Vagnarelli, P., Sonoda, E., Takeda, S., and Earnshaw, W.C. (2003). Sister chromatid cohesion and genome stability in vertebrate cells. Biochem. Soc. Trans. 31, 263-265   DOI
17 Strom. L. and Sjogren, C. (2005). DNA damage-induced cohesion. Cell Cycle 4, 536-539   DOI   ScienceOn
18 Riedel, C.G., Gregan, J., Gruber, S., and Nasmyth, K. (2004). Is chromatin remodeling required to build sister chromatid cohesion? Trends Biochem. Sci. 8, 389-392
19 Cairns, B.R. (2003). Chromatin remodeling complexes: strength in diversity, precision through specialization. Curro Opin. Genet. Dev. 15, 185-190
20 Mighell, A.J., Markham, AF., and Robinson. P.A. (1997). Alu Sequences. FEBS Lett. 417,1-5   DOI   ScienceOn
21 Volkov, A., Mascarenhas, J., Andrei-Selmer, C., Ulrich, H.D., and Graumann, P.A. (2003). prokaryotic condensin/ cohesin-like complex canactivelycompact chromosomes from a single positionon the nucleoidand binds to DNA as a ring-like structure. Mol. Cell BioI. 23, 5638-5650   DOI
22 Glynn, E.F., Megee, P.C., Yu, H.G., Mistrot, C., Unal, E., Koshland, D.E, DeRish, J.L., and Gerton, J.L. (2004). Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS BioI. 2, E259   DOI   ScienceOn
23 Jessberger, R. (2003). SMC proteins at the crossroads of diverse chromosomal Processes. IUBMB Life 55, 643-652   DOI   ScienceOn
24 Jessberger, R.(2005). Howto divorcer engaged chromsomes? Mol. Cell BioI. 25, 18-22   DOI   ScienceOn
25 PaPi, M., Berdougo, E., Randall, C.L., Ganguly, S., and Jallepalli, P.V. (2005). MultiPle roles for separase auto-cleavage during the G2/M transition. Nat. Cell Biol. 7,1029-1035   DOI   ScienceOn
26 Campbell, J.L. and Cohen, F.O. (2002). Chromosome cohesion: ringaroundthe sisters? Trends. Biochem. Sci. 27, 492-495   DOI   ScienceOn