Replicative Senescence in Cellular Aging and Oxidative Stress

세포 노화에 있어서 복제 세네센스 현상과 산화적 스트레스의 영향

  • 박영철 (대구가톨릭대학교 자연과학연구소)
  • Published : 2003.09.01

Abstract

Explanted mammalian cells perform a limited number of cell division in vitro and than are arrested in a state known as replicative senescence. Such cells are irreversibly blocked, mostly in the G1 phase of cell cycle, and are no longer sensitive to growth factor stimulation. Thus replicative senescence is defined as a permanent and irreversible loss of replicative potential of cells. For this characteristic, replicative senescence seems to evolve to protect mammalian organism from cancer. However, senescence also contributes to aging. It seems to decrease with age of the cell donor and, as a form of cell senescence, is thought to underlie the aging process. Extensive evidence supports the idea that progressive telomere loss contributes to the phenomenon of cell senescence. Telomeres are repetitive structures of the sequence (TTAGGG)n at the ends of linear chromosomes. It has been shown that the average length of telomere repeats in human somatic cells decreases by 30∼200 bp with each cell division. It is generally believed that when telomeres reach a critical length, a signal is activated to initiate the senescent program. This has given rise to the hypothesis that telomeres act as mitotic clocks to regulate lifespan. One proposes that cumulative oxidative stress, mainly reactive oxygen species generated from mitochondria, may mainly cause telomere shortening, accelerating aging. Here, the biological importance and mechanism of replicative senescence were briefly reviewed. Also it was summarized that how oxidative stress affects replicative senescence and telomere shortening.

Keywords

References

  1. Exp. Gerontol. v.31 Models of initiation of replicative senescence by loss of telomeric DNA Allsopp,R.C. https://doi.org/10.1016/0531-5565(95)02008-X
  2. Exp. Cell. Res. v.219 Evidence for a critical telomere lengh in senescent human fibroblast Allsopp,R.C.;Harley,C.B. https://doi.org/10.1006/excr.1995.1213
  3. Bioorg. Med. Chem. Lett. v.13 Inhibition of telomerase by BIBR 1532 and related analogues Barma,D.K.;Elayadi,A.;Falck,J.R.;Corey,D.R. https://doi.org/10.1016/S0960-894X(03)00101-X
  4. J. Cell. Sci. Suppl. v.10 Differentiation of fibroblast stem cells Bayreuther,K.;Rodemann,H.P.;Francz,P.I.;Maier,K.
  5. In vitro cell, Dev. Biol. v.14 The effect of donor age on the in vitro lifespan of cultured human arterial smooth-muscle cells Bierman,E.L. https://doi.org/10.1007/BF02616126
  6. Nature v.350 Structure and function of telomeres Blackburn,E. https://doi.org/10.1038/350569a0
  7. Science v.277 Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts Brown,J.P.;Wei,W.;Sedivy,J.M. https://doi.org/10.1126/science.277.5327.831
  8. Adv. Exp. Med. Biol. v.78 Mitochondrial production of superoxide radical and hydrogen peroxide Boveris,A. https://doi.org/10.1007/978-1-4615-9035-4_5
  9. Science v.279 Extension of life-span by introduction of telomerase into normal human cells Bondnar,A.G.;Ouellette,M.;Frolkis,M.;Holt,S.E.;Chiu,C.P.;Morin,G.B.;Harley,C.B.;Shay,J.W.;Lichtsteiner,S.;Wright,W.E. https://doi.org/10.1126/science.279.5349.349
  10. Cancer Res. v.55 Mutant p53 rescues human diploid cells from senescence without inhibithg in induction of SDI1/WAF1 Bond,J.A.;Blaydes,J.P.;Rowson,J.;Haugh,M.F.;Smith,J.R.;Wynford,T.D.;Wylie,F.S.
  11. Cell v.84 Replicative senescence: an old lives' tale? Campisi,J. https://doi.org/10.1016/S0092-8674(00)81023-5
  12. Lancet v.346 Cancer progression and p53 Carson,D.A.;Lois,A. https://doi.org/10.1016/S0140-6736(95)91693-8
  13. Prostate v.55 Cellular senescence in the pathogenesis of benign prostatic hyperplasia Castro,P.;Giri,D.;Lamb,D.;Ittmann,M. https://doi.org/10.1002/pros.10204
  14. Oncogene v.11 Telomerase activity in normal and malignant murine tissues Chadeneau,C.;Siegel,P.;Harley,C.B.;Muller,W.J.;Bacchetti,S.
  15. Proc. Natl. Acad. Sci. v.92 Oxidative DNA damage and senescence of human diploid fibroblast cells Chen,Q.;Fischer,A.;Reagan,J.D.;Yan,L.J.;Ames,B.N. https://doi.org/10.1073/pnas.92.10.4337
  16. Yan Ke Xue Bao. v.19 Inhibition on telomerase activity and cytotoxic effects by cisplatin in cultured human choroidal melanoma cells Cheng,H.;Wu,Z.;Zheng,J.;Lu,G.;Yan,J.;Liu,M.;Huang,D.;Lin,J.
  17. Proc. Soc. Exp. Biol. Med. v.214 Replicative senescence and cell immortality: the role of telomeres and telomerase Chiu,C.P.;Harley,C.B. https://doi.org/10.3181/00379727-214-44075
  18. Free Radic. Biol. Med. v.32 Iron release, oxidative stress and erythrocyte ageing Comporti,M.;Signorini,C.;Buonocore,G.;Ciccoli,L. https://doi.org/10.1016/S0891-5849(02)00759-1
  19. EMBO J. v.11 Telomere shorterning assocciated with chromosome instability is arrested in immortal cells which express telomerase activity Counter,C.M.;Avilion,A.A.;LeFeuvre,C.E.;Stewart,N.G.;Greider,C.W.;Narley,C.B.;Bacchetti,S.
  20. Virchows Arch. v.437 Telomeres, telomerase and cancer: an up-date Dhaene,K.;Van Marck,E.;Parwaresch,R. https://doi.org/10.1007/s004280000189
  21. Proc. Natl. Acad. Sci. v.92 A biomarker that identifies senescent human cells in culture and in aging skin in vivo Dimri,G.P.;Lee,X.;Basile,G.;Acosta,M.;Scott,G.;Roskelley,C.;Medrano,E.E.;Linskens,M.;Rubelj,I.;Pereira-Smith,O.;Peacocke,M.;Campisi,J. https://doi.org/10.1073/pnas.92.20.9363
  22. Gene Ther. v.8 Cell cycle arrest is sufficient for p53-mediated tumor regression Dubrez,L.;Coll,J.L.;Hurbin,A.;de Fraipont,F.;Lantejoul,S.;Favrot,M.C. https://doi.org/10.1038/sj.gt.3301592
  23. FEBS Lett. v.502 Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence Dumont,P.;Royer,V.;Pascal,T.;Dierick,J.F.;Chainiaux,F.;Frippiat,C.;de Magalhaes,J.P.;Eliaers,F.;Remacle,J.;Toussaint,O. https://doi.org/10.1016/S0014-5793(01)02679-5
  24. Nat Genet. v.26 Telomere maintenance by recombination in human cells Dunham,M.A.;Neumann,A.A.;Fasching,C.L.;Reddel,R.R. https://doi.org/10.1038/82586
  25. Science v.269 The RNA component of human telomerase Feng,J.;Funk,W.D.;Wang,S.S.;Weinrich,S.L.;Avilion,A.A.;Chiu,C.P.;Adams,R.R.;Chang,E.;Allsopp,R.C.;Yu,J. https://doi.org/10.1126/science.7544491
  26. Cancer Res. v.60 Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors Figueroa,R.;Lindenmaier,H.;Hergenhahn,M.;Nielsen,K.V.;Boukamp,P.
  27. Life Sci. v.63 Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress Furumoto,K.;Inoue,E.;Nagao,N.;Hiyama,E.;Miwa,N. https://doi.org/10.1016/S0024-3205(98)00351-8
  28. Mol. Cell. Biol. v.15 Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint Garvik,B.;Carson,M.;Hartwell,L. https://doi.org/10.1128/MCB.15.11.6128
  29. Free Radic Res. v.35 Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart Gredilla,R.;Barja,G.;Lopez-Torres,M. https://doi.org/10.1080/10715760100300931
  30. Science v.249 Replicative senescence: the human fibroblast comes of age Goldstein,S.E. https://doi.org/10.1126/science.2204114
  31. Exp. Cell. Res. v.215 Genetic analysis of indefinite division in human cells: evidence for a common immotalizing mechanism in T and B lymphoid cell lines Goletz,T.J.;Robetorye,S.;Pereeira-Smith,O.M. https://doi.org/10.1006/excr.1994.1318
  32. Mol. Cell. Biol. v.16 Rat embryo fibroblasts immortalized with simian virus 40 large T antigen undergo senescence upon its inactivation Gonos,E.S.;Burns,J.S.;Mazars,G.R.;Koborna,A.;Riley,T.E.;Barnett,S.C.;Zafarana,G.;Ludwig,R.L.;Ikram,Z.;Powell,A.J.;Jat,P.S. https://doi.org/10.1128/MCB.16.9.5127
  33. Nippon Rinsho v.58 Werner syndrome Goto,M.;Ishikawa,Y.
  34. Mol. Pharmacol. v.60 Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes Gowan,S.M.;Heald,R.;Stevens,M.F.;Kelland,L.R. https://doi.org/10.1124/mol.60.5.981
  35. Nat. Genet. v.17 The Werner syndrome protein is a DNA helicase Gray,M.D.;Shen,J.C.;Kamath-Loeb,A.S.;Blank,A.;Sopher,B.L.;Martin,G.M.;Oshima,J.;Loeb,L.A. https://doi.org/10.1038/ng0997-100
  36. FASEB J. v.15 Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart Gredilla,R.;Sanz,A.;Lopez-Torres,M.;Barja,G. https://doi.org/10.1096/fj.00-0764fje
  37. Microsc. Res. Tech. v.59 Effect of time of restriction on the decrease in mitochondrial H₂O₂production and oxidative DNA damage in the heart of food-restricted rats Gredilla,R.;Lopez-Torres,M.;Barja,G. https://doi.org/10.1002/jemt.10204
  38. Oncogene. v.18 Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation Greenberg,R.A.;O'Hagan,R.C.;Deng,H.;Xiao,Q.;Hann,S.R.;Adams,R.R.;Lichtsteiner,S.;Chin,L.;Morin,G.B.;DePinho,R.A. https://doi.org/10.1038/sj.onc.1202669
  39. Cell. v.97 Mammalian telomeres end in a large duplex loop Griffith,J.D.;Comeau,L.;Rosenfield,S.;Stansel,R.M.;Bianchi,A.;Moss,H.;de Lange,T. https://doi.org/10.1016/S0092-8674(00)80760-6
  40. Nature v.345 Telomeres shorten during ageing of human fibroblast Harley,C.B.;Futcher,A.B.;Greider,C.W. https://doi.org/10.1038/345458a0
  41. Cell v.75 The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases Harper,J.W.;Adami,G.R.;Wei,N.;Keyomarsi,K.;Elledge,S.J.
  42. Nature v.346 Telomere reduction in human colorectal carnoma and with ageing Hastie,N.D.;Dempster,M.;Dunlop,M.G.;Thompson,A.M.;Green,D.K.;Allshire,R.C. https://doi.org/10.1038/346866a0
  43. Exp. Cell. Res. v.37 The limited in vitro lifetime of human diploid cell strains Hayflick,L. https://doi.org/10.1016/0014-4827(65)90211-9
  44. N. Engl. Med. v.295 The cell biology of human aging Hayflick,L. https://doi.org/10.1056/NEJM197612022952308
  45. Am. J. Pathol. v.162 Telomere shortening and cellular senescence in a model of chronic renal allograft rejection Joosten,S.A.;Van Ham,V.;Nolan,C.E.;Borrias,M.C.;Jardine,A.G.;Shiels,P.G.;van Kooten,C.;Paul,L.C. https://doi.org/10.1016/S0002-9440(10)63926-0
  46. Science v.283 p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2 Karlseder,J.;Broccoli,D.;Dai,Y.;Hardy,S.;de Lange,T. https://doi.org/10.1126/science.283.5406.1321
  47. Mol. Pharmacol. v.63 Potent inhibition of human telomerase by nitrostyrene derivatives Kim,J.H.;Kim,J.H.;Lee,G.E.;Lee,J.E.;Chung,I.K. https://doi.org/10.1124/mol.63.5.1117
  48. J. Am. Chem. Soc. v.124 Telomestatin,a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex Kim,M.Y.;Vankayalapati,H.;Shin-Ya,K.;Wierzba,K.;Hurley,L.H. https://doi.org/10.1021/ja017308q
  49. Science v.266 Specific association of human telomerase activity with immortal cells and cancer Kim,N.W.;Piatyszek,M.A.;Prowse,K.R.;Harley,C.B.;West,M.D.;Ho,P.L.;Coviello,G.M.;Wright,W.E.;Weinrich,S.L.;Shay,J.W. https://doi.org/10.1126/science.7605428
  50. Nat. Genet. v.23 TIN2, a new regulator of telomere length in human cells Kim,S.H.;Kaminker,P.;Campisi,J. https://doi.org/10.1038/70508
  51. Exp. Cell Res. v.195 Fibronetin expression increases during in vitro cellular senescence; correlation with increased cell area Kumazaki,T.Robetorye,R.S.;Robetorye,S.C.;Smith,J.R. https://doi.org/10.1016/0014-4827(91)90494-F
  52. Science v.288 Extension of cell life-span and telomere length in animals cloned from senescent somatic cells Lanza,R.P.;Cibelli,J.B.;Blackwell,C.;Cristofalo,V.J.;Francis,M.K.;Baerlocher,G.M.;Mak,J.;Schertzer,M.;Chavez,E.A.;Sawyer,N.;Lansdorp,P.M.;West,M.D. https://doi.org/10.1126/science.288.5466.665
  53. Aging Cell. v.1 Mitochondrial dysfunction leads to telomere attrition and genomic instability Liu,L.;Trimarchi,J.R.;Smith,P.J.;Keefe,D.L. https://doi.org/10.1046/j.1474-9728.2002.00004.x
  54. Science v.232 Existemce of high abundance antiproliferative mRNAs in senescent human dipoid fibroblasts Lumpkin,C.K.;McClung,J.J.K. https://doi.org/10.1126/science.2421407
  55. Curr. Opin. Cell Biol. v.12 Genes involved in senescence and immortalization Lundberg,A.S.;Hahn,W.C.;Gupta,P.;Weinberg,R.A. https://doi.org/10.1016/S0955-0674(00)00155-1
  56. Cell. v.88 Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening Makarov,V.L.;Hirose,Y.;Langmore,J.P. https://doi.org/10.1016/S0092-8674(00)81908-X
  57. Exp. Gerontol. v.35 Caloric restriction and aging: an update Masoro,E.J. https://doi.org/10.1016/S0531-5565(00)00084-X
  58. Biorheology v.39 Human chondrocyte senescence and osteoarthritis Martin,J.A.;Buckwalter,J.A.
  59. J. Biol. Chem. v.277 Regulation of collagenase expression during replicative senescence in human fibroblasts by Akt-forkhead signaling Mawal-Dewan,M.;Lorenzini,A.;Frisoni,L.;Zhang,H.;Cristofalo,V.J.;Sell,C. https://doi.org/10.1074/jbc.M104515200
  60. Exp. Cell Res. v.285 Extension of replicative lifespan in WI-38 human fibroblasts by dexamethasone treatment is accompanied by suppression of p21 Waf1/Cip1/Sdi1 levels Mawal-Dewan,M.;Frisoni,L.;Cristofalo,V.J.;Sell,C. https://doi.org/10.1016/S0014-4827(03)00013-2
  61. Bratisl. Lek. Listy. v.103 Telomerase inhibitors in anticancer therapy: gossypol as a potential telomerase inhibitor Mego,M.
  62. Cell v.90 hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization Meyerson,M.;Counter,C.M.;Eaton,E.N.;Ellisen,L.W.;Steiner,P.;Caddle,S.D.;Ziaugra,L.;Beijersbergen,R.L.;Davidoff,M.J.;Liu,Q.;Bacchetti,S.;Haber,D.A.;Weinberg,R.A. https://doi.org/10.1016/S0092-8674(00)80538-3
  63. Exp. Cell Res. v.201 Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts Millis,A.J.;Hoyle,M.;McCue,H.M.;Martini,H. https://doi.org/10.1016/0014-4827(92)90286-H
  64. Cancer Res. v.63 Simultaneous targeting of telomeres and telomerase as a cancer therapeutic approach Mo,Y.;Gan,Y.;Song,S.;Johnston,J.;Xiao,X.;Wientjies,M.G.;Au,J.L.
  65. Nucleic Acids Res. v.29 The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases Mohaghegh,P.;Karow,J.K.;Brosh,Jr,R.M.Jr; Bohr,V.A.;Hickson,I.D. https://doi.org/10.1093/nar/29.13.2843
  66. Mol. Cell. Biol. v.11 Diverse gene sequences are overexpressed in Waner syndrome fibroblasts undergoing premature replicative senescence Murano,S.;R.Thweatt;R.J.Shmookler-Reis;R.A.Jones;Moreman,E.J.;Goldstein,S. https://doi.org/10.1128/MCB.11.8.3905
  67. Nature v.299 Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogenesis Newbold,R.F.;Overell,R.W.;Connell,J.R. https://doi.org/10.1038/299633a0
  68. Cell. v.88 TLP1: a gene encoding a protein component of mammalian telomerase is a novelmember of WD repeats family Nakayama,J.;Saito,M.;Nakamura,H.;Matsuura,A.;Ishikawa,F. https://doi.org/10.1016/S0092-8674(00)81933-9
  69. Genomics v.23 Intergrated mapping analysis of the werner syndrome region of chromosome 8 Oshima,J.;Chang,E.U.;Boennke,M.;Weber,J.L.;Edelhoff,S.;Wagner,M.J.;Wells,D.E.;Wood,S.;Disteche,C.M.;Martin,G.M.;Schllenberg,G.D. https://doi.org/10.1006/geno.1994.1464
  70. J. of Cell. Physi. v.162 Regulation of c-fos expression in senescencing werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors Oshima,J.;Campisi,J.;Tannock,T.C.A.;Martin,G.M. https://doi.org/10.1002/jcp.1041620213
  71. Mech. Ageing Dev. v.123 Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after 4 months of caloric restriction than in age-matched controls Pamplona,R.;Portero-Otin,M.;Requena,J.;Gredilla,R.;Barja,G. https://doi.org/10.1016/S0047-6374(02)00076-3
  72. Proc. Natl. Acad. Sci. v.85 Genetic analysis of indefinite division in human cells: identification of four complementation groups Pereira-Smith,O.M.;Smith,J.R. https://doi.org/10.1073/pnas.85.16.6042
  73. Exp. Cell. Res. v.239 Preferential accumulation of single-stranded regions in telomeres of human fibroblasts Petersen,S.;Saretzki,G.;von Zglinicki,T. https://doi.org/10.1006/excr.1997.3893
  74. Mech. Ageing Dev. v.123 Modelling telomere shortening and the role of oxidative stress Proctor,C.J.;Kirkwood,T.B. https://doi.org/10.1016/S0047-6374(01)00380-3
  75. Exp. Cell Res. v.227 Aging affects epidermal growth factor receptor phosphorylation and traffic kinetics Reenstra,W.R.;Yaar,M.;Gilchrest,B.A. https://doi.org/10.1006/excr.1996.0274
  76. Cancer Res. v.56 Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus E6, but not E7, transformed human uroepithelial cells Reznikoff,C.A.;Yeager,T.R.;Belair,C.D.;Savelieva,E.;Puthenveeyttil,J.A.;Stadler,W.M.
  77. Proc. Natl. Acad. Sci. v.89 Transcription factor AP-1 activity is required for initiaion of DNA synthesis and is lost during cellular aging Riabowol,K.;Schiff,J.;Gilman,M.Z. https://doi.org/10.1073/pnas.89.1.157
  78. Proc. Natl. Acad. Sci. v.78 Evidence for a relationship between longevity of mammalian species and life-spans of normal fibroblasts in vitro and erythrocytes in vivo Rohme,D. https://doi.org/10.1073/pnas.78.8.5009
  79. Env. Heal. Pers. v.93 Senescence as a mode of tumor suppression Sager,R. https://doi.org/10.1289/ehp.919359
  80. Lancet. v.358 Telomere shortening in atherosclerosis Samani,N.J.;Boultby,R.;Butler,R.;Thompson,J.R.;Goodall,A.H. https://doi.org/10.1016/S0140-6736(01)05633-1
  81. Ann. N. Y. Acad. Sci. v.959 Replicative aging, telomeres, and oxidative stress Saretzki,G.;Von Zglinicki,T. https://doi.org/10.1111/j.1749-6632.2002.tb02079.x
  82. Oncogene v.18 Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments Saretzki,G.;Sitte,N.;Merkel,U.;Wurm,R.E.;von Zglinicki,T. https://doi.org/10.1038/sj.onc.1202898
  83. Eur. J. Cancer v.33 A survey of telomerase activity in human cancer Shay,J.W.;Bacchetti,S. https://doi.org/10.1016/S0959-8049(97)00062-2
  84. Cell. v.102 Cellular senescence: mitotic clock or culture shock? Sherr,C.J.;DePinho,R.A. https://doi.org/10.1016/S0092-8674(00)00046-5
  85. Free Radic. Biol. Med. v.24 Accelerated telomere shortening in fibroblasts after extended periods of confluency Sitte,N.;Saretzki,G.;von Zglinicki,T. https://doi.org/10.1016/S0891-5849(97)00363-8
  86. J. Vasc. Surg. v.33 Senescence and the healing rates of venous ulcers Stanley,A.;Osler,T. https://doi.org/10.1067/mva.2001.115379
  87. Clin. Geriatr. Med. v.5 In vitro studies of aging Stanulis-Praeger,B.M.
  88. Science v.249 Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts Stein,G.H.;Beeson,M.;Gordon,L. https://doi.org/10.1126/science.2166342
  89. Cancer Biol. Ther. v.2 Role of the retinoblastoma protein in differentiation and senescence Thomas,D.M.;Yang,H.S.;Alexander,K.;Hinds,P.W. https://doi.org/10.4161/cbt.2.2.235
  90. Exp. Gerontol. v.27 Isolation and characterization of gene sequences overexpressed in Werner syndrome fibroblasts during premature replicative senescence Thweatt,R.;Murano,S.;Fleischmann,R.D.;Goldstein,S. https://doi.org/10.1016/0531-5565(92)90078-E
  91. Pathol. Biol. v.42 Arguments in favour of the concept of critical threshold of accumulation of errors in cell death. Qualities and limits of this concept in cell aging Toussaint,O.;Remacle,J.
  92. Curr. Biol. v.8 Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span Vaziri,H.;Benchimol,S. https://doi.org/10.1016/S0960-9822(98)70109-5
  93. Biochemistry v.62 Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal leading to activation of p53 protein and limited life-span of human diploid fibroblasts Vaziri,H.
  94. Exp. Gerontol. v.31 From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging Vaziri,H.;Benchimol,S. https://doi.org/10.1016/0531-5565(95)02025-X
  95. Exp. Cell Res. v.220 Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? von Zglinicki,T.;Saretzki,G.;Docke,W.;Lotze,C. https://doi.org/10.1006/excr.1995.1305
  96. Free Radic. Biol. Med. v.28 Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts von Zglinicki,T.;Pilger,R.;Sitte,N. https://doi.org/10.1016/S0891-5849(99)00207-5
  97. Cancer Res. v.55 Senescent human fibroblast resist programmed cell death, and failure to suppress bcl2 is involved Wang,E.
  98. J. Cell. Biochem. v.54 Control of fibroblast senescence and activation of programmed cell death Wang,E.;Lee,M.J.;Pandey,S. https://doi.org/10.1002/jcb.240540410
  99. Cancer Res. v.59 Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts Wei,S.;Wei,W.;Sedivy,J.M.
  100. FASEB J. v.16 Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis Wiemann,S.U.;Satyanarayana,A.;Tsahuridu,M.;Tillmann,H.L.;Zender,L.;Klempnauer,J.;Flemming,P.;Franco,S.;Blasco,M.A.;Manns,M.P.;Rudolph,K.L. https://doi.org/10.1096/fj.01-0977com
  101. Crit. Rev. Oral. Biol. Med. v.13 P21Waf1 control of epithelial cell cycle and cell fate Weinberg,W.C.;Denning,M.F. https://doi.org/10.1177/154411130201300603
  102. Exp. Cell Res. v.184 Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity West,M.D.;Pereira-Smith,O.M.;Smith,J.R. https://doi.org/10.1016/0014-4827(89)90372-8
  103. Ophthalmol. Vis. Sci. v.41 Relationship of telomeres and p53 in aging bovine corneal endothelial cell cultures Whikehart,D.R.;Register,S.J.;Chang,Q.;Montgomery,B.
  104. Nature v.421 Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing Wong,K.K.;Maser,R.S.;Bachoo,R.M.;Menon,J.;Carrasco,D.R.;Gu,Y.;Alt,F.W.;DePinho,R.A. https://doi.org/10.1038/nature01385
  105. Nat Med. v.6 Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology Wright,W.E.;Shay,J.W. https://doi.org/10.1038/78592
  106. Nat. Genet. v.21 Direct activation of TERT transcription by c-MYC Wu,K.J.;Grandori,C.;Amacker,M.;Simon-Vermot,N.;Polack,A.;Lingner,J.;Dalla-Favera,R. https://doi.org/10.1038/6010
  107. Exp. Cell Res. v.285 Mutant p53 can delay growth arrest and loss of CDK2 activity in senescing human fibroblasts without reducing p21 (WAF1) expression Wyllie,F.;Haughton,M.;Bartek,J.;Rowson,J.;Wynford-Thomas,D. https://doi.org/10.1016/S0014-4827(03)00050-8
  108. FEBS Lett. v.470 Homocysteine accelerates entothelial cell senescence Xu,D.;Neville,R.;Finkel,T. https://doi.org/10.1016/S0014-5793(00)01278-3
  109. J. Biol. Chem. v.274 Human endothelial cell life extension by telomerase expression Yang,J.;Chang,E.;Cherry,A.M.;Bangs,C.D.;Oei,Y.;Bodnar,A.;Bronstein,A.;Chiu,C.P.;Herron,G.S. https://doi.org/10.1074/jbc.274.37.26141
  110. Exp. Cell Res. v.221 Increased expression of p21 Sdi1 in adrenocortical cells when they are placed in culture Yang,L.;Didenko,V.V.;Noda,A.;Bilyeu,T.A.;Darlington,G.J.;Smith,J.R.;Hornsby,P.J. https://doi.org/10.1006/excr.1995.1359
  111. Science v.272 Positional cloning of the werner's syndrome gene Yu,C.E.;Oshima,J.;Fu,Y.H.;Wijsman,E.M.;Hisama,F.;Alisch,R.;Matthews,S.;Nakura,J.;Miki,T.;Ouais,S.;Martin,G.M.;Mulligan,J.;Schellenberg,G.D. https://doi.org/10.1126/science.272.5259.258
  112. Exp. Cell Res. v.222 Differential regulation of collagenase and stromelysin mRNA in late passage cultures of human fibroblasts Zeng,G.;Millis,A.J. https://doi.org/10.1006/excr.1996.0019
  113. Oncogene. v.12 Regulation of p21WFI/CIP1 expression by p53-independent pathways Zeng,Y.X.;El-Deiry,W.S.
  114. Proc. Natl. Acad. Sci. v.96 Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening Zhu,J.;Wang,H.;Bishop,J.M.;Blackburn,E.H. https://doi.org/10.1073/pnas.96.7.3723
  115. Sheng Wu Gong Cheng Xue Bao. v.18 The effect of antioxidants on the in vitro life-span of keratinocyte Zhou,Y.;Ouyang,A.L.;Hua,P.;Tan,W.S.