DOI QR코드

DOI QR Code

Genetic and Phenotypic Diversity of Parathion-Degrading Bacteria Isolated from Rice Paddy Soils

  • Choi, Min-Kyeong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Kyung-Duk (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ahn, Kyong-Mok (Department of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Dong-Hyun (Department of Agricultural Biotechnology, Seoul National University) ;
  • Hwang, Jae-Hong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Seong, Chi-Nam (Department of Biology, Sunchon National University) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2009.12.31

Abstract

Three parathion-degrading bacteria and eight pairs of bacteria showing syntrophic metabolism of parathion were isolated from rice field soils, and their genetic and phenotypic characteristics were investigated. The three isolates and eight syntrophic pairs were able to utilize parathion as a sole source of carbon and energy, producing p-nitrophenol as the intermediate metabolite during the complete degradation of parathion. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Burkholderia, Arthrobacter, Pseudomonas, Variovorax, and Ensifer. The chromosomal DNA patterns of the isolates obtained by polymerasechain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences were distinct from one another. Ten of the isolates had plasmids. All of the isolates and syntrophic pairs were able to degrade parathion-related compounds such as EPN, p-nitrophenol, fenitrothion, and methyl parathion. When analyzed with PCR amplification and dot-blotting hybridization using various primers targeted for the organophosphorus pesticide hydrolase genes of previously reported isolates, most of the isolates did not show positive signals, suggesting that their parathion hydrolase genes had no significant sequence homology with those of the previously reported organosphophate pesticide-degrading isolates.

Keywords

References

  1. Ahn, J. H., M. C. Kim, H. C. Shin, M. K. Choi, S. S. Yoon, T. S. Kim, H. G. Song, G. H. Lee, and J. O. Ka. 2006. Improvement of PCR amplification bias for community structure analysis of soil bacteria by denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 16: 1561-1569
  2. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410
  3. Barles, R. W., C. G. Daughton, and D. P. H. Hsieh. 1979. Accelerated parathion degradation in soil inoculated with acclimated bacteria under field conditions. Environ. Contamin. Toxicol. 8: 647-660 https://doi.org/10.1007/BF01054867
  4. Cheng, T. C., S. P. Harvey, and A. N. Stroup. 1993. Purification and properties of a highly active organophosphorus acid hydrolase from Alteromonas undina. Appl. Environ. Microbiol. 59: 3138-3140
  5. de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180-2187
  6. Dumas, D. P., S. R. Caldwell, J. R. Wild, and F. M. Raushel. 1989. Purification and properties of phosphotriesterase from Pseudomonas diminuta. J. Biol. Chem. 264: 19659-19665
  7. EPA. 2000. http://www.epa.gov/REDs/factsheets/p155fct.pdf
  8. Hardy, K. G. 1993. Plasmid: A Practical Approach, pp. 99-100. 2nd Ed. Oxford University Press, Walton Street, New York
  9. Hayatsu, M., M. Hirano, and S. Tokuda. 2000. Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl. Environ. Microbiol. 66: 1737-1740 https://doi.org/10.1128/AEM.66.4.1737-1740.2000
  10. Horne, I., R. L. Harcourt, T. D. Sutherland, R. J. Russell, and J. G. Oakesshott. 2002. Identification of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol. Lett. 206: 51-55 https://doi.org/10.1111/j.1574-6968.2002.tb10985.x
  11. Horne, I., T. D. Stherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott. 2002. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3372-3376 https://doi.org/10.1128/AEM.68.7.3371-3376.2002
  12. Hynes, M. F., R. Simon, and A. Puhler. 1985. The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid 13: 99-105 https://doi.org/10.1016/0147-619X(85)90062-9
  13. Kim, K. D., J. H. Ahn, T. S. Kim, S. C. Park, C. N. Seong, H. G. Song, and J. O. Ka. 2009. Genetic and phenotypic diversity of fenitrothion-degrading bacteria isolated from soils. J. Microbiol. Biotechnol. 19: 113-120 https://doi.org/10.4014/jmb.0808.467
  14. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, et al. 2005. Molecular and cultivation-based characterization of bacterial structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  15. Kim, T. S., J. H. Ahn, M. K. Choi, H. Y. Weon, M. S. Kim, C. N. Seong, H. G. Song, and J. O. Ka. 2007. Cloning and expression of a parathion hydrolase gene from a soil bacterium, Burkholderia sp. JBA3. J. Microbiol. Biotechnol. 17: 1890-1893
  16. Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383
  17. Korea Crop Protection Association. 2005. Agrochemical Year Book 2005
  18. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England
  19. Li, X., J. He, and S. Li. 2007. Isolation of a chlorpyrifosdegrading bacterium, Sphingomonas sp. Dsp-2, and cloning of the mpd gene. Res. Microb. 158: 143-149 https://doi.org/10.1016/j.resmic.2006.11.007
  20. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr., P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28(1): 173-174 https://doi.org/10.1093/nar/28.1.173
  21. McConnell, R., F. Pachecob, K. Wahlberg, W. Klein, O. Malespin, R. Magnotti, M. Akerblom, and D. Murray. 1999. Subclinical health effects of environmental pesticide contamination in a developing country: Cholinesterase depression in children. Environ. Res. 81: 87-91 https://doi.org/10.1006/enrs.1999.3958
  22. Munnecke, D. M. and D. P. H. Hsieh. 1975. Pathways of microbial metabolism of parathion. Am. Soc. Microb. 31: 63-69
  23. Nelson, L. M. 1982. Biologically induced hydrolysis of parathion in soil: Isolation of hydrolyzing bacteria. Soil Biol. Biochem. 14: 219-222 https://doi.org/10.1016/0038-0717(82)90028-1
  24. Nelson, L. M., B. Yaron, and P. H. Nye. 1982. Biologically induced hydrolysis of parathion in soil: Kinetics and modeling. Soil Biol. Biochem. 14: 223-228 https://doi.org/10.1016/0038-0717(82)90029-3
  25. Ohshiro, K., T. Kakuta, N. Nikaidou, T. Watanabe, and T. Uchiyama. 1999. Molecular cloning and nucleotide sequencing of organophosphorus insecticide hydrolase gene from Arthrobacter sp. strain B-5. J. Biosci. Bioeng. 87: 531-534 https://doi.org/10.1016/S1389-1723(99)80105-4
  26. Park, H. D. and J. O. Ka. 2003. Genetic and phenotypic diversity of dichlorprop-degrading bacteria isolated from soil. J. Microbiol. 41: 7-15
  27. Park, I. H. and J. O. Ka. 2003. Isolation and characterization of 4-(2,4-dichlorophenoxy) butyric acid-degrading bacteria from agricultural soil. J. Microbiol. Biotechnol. 13: 243-250
  28. Qing, H., Z. Zhang, Y. Hong, and S. Li. 2007. A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int. Biodeterior. Biodegrad. 59: 55-61 https://doi.org/10.1016/j.ibiod.2006.07.013
  29. Ragnardottir, K. V. 2000. Environmental fate and toxicology of organophosphate pesticides. J. Geol. Soc. London 157: 859-879 https://doi.org/10.1144/jgs.157.4.859
  30. Rani, N. L. and D. Lalithakumari. 1994. Degradation of methyl parathion by Pseudomonas putida. Can. J. Microbiol. 40: 1000-1006 https://doi.org/10.1139/m94-160
  31. Sender, C. M., D. T. Gibson, D. M. Munnecke, and J. H. Lancaster. 1982. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl. Environ. Microbiol. 37: 886-891
  32. Siddaramappa, R., K. P. Rajaram, and N. Sethunathan. 1973. Degradation of parathion by bacteria isolated from flooded soil. Am. Soc. Microbiol. 26: 846-849
  33. Siddavattam, D., K. Syed, B. Manavathi, S. B. Pakala, and M. Merrick. 2003. Transposon-like organization of the plasmidborne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Appl. Environ. Microbiol. 69: 2533-2539 https://doi.org/10.1128/AEM.69.5.2533-2539.2003
  34. Singh, B. K. and A. Walker. 2006. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 30: 428-471 https://doi.org/10.1111/j.1574-6976.2006.00018.x
  35. Tago, K., E. Sekiya, A. Kiho, C. Katsuyama, Y. Hoshito, N. Yamada, K. Hirano, H. Sawada, and M. Hayatsu. 2006. Diversity of fenitrothion-degrading bacteria in soil from distant geographical areas. Microbes Environ. 21: 58-64 https://doi.org/10.1264/jsme2.21.58

Cited by

  1. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities vol.341, pp.6147, 2009, https://doi.org/10.1126/science.1236281
  2. Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis vol.23, pp.3, 2014, https://doi.org/10.1007/s10646-014-1205-y
  3. Isolation and characterization of novel phorate-degrading bacterial species from agricultural soil vol.21, pp.3, 2014, https://doi.org/10.1007/s11356-013-2155-2
  4. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation vol.3, pp.None, 2009, https://doi.org/10.7717/peerj.1378
  5. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs vol.24, pp.14, 2009, https://doi.org/10.1111/mec.13265
  6. Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability vol.73, pp.2, 2009, https://doi.org/10.1007/s00248-016-0852-3
  7. Isoflavones and Isoflavone Glycosides: Structural-Electronic Properties and Antioxidant Relations-A Case of DFT Study vol.2019, pp.None, 2009, https://doi.org/10.1155/2019/4360175
  8. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review vol.49, pp.13, 2009, https://doi.org/10.1080/10643389.2019.1565554
  9. Microbial Depolymerization of Epoxy Resins: A Novel Approach to a Complex Challenge vol.12, pp.1, 2009, https://doi.org/10.3390/app12010466