• Title/Summary/Keyword: relative roughness

Search Result 185, Processing Time 0.024 seconds

Non-invasive Measurements of the Thickness of YBCO Thin Films by Using Microwave Resonators: Roles of the Uncertainty in the Calibration Film Thickness (마이크로파 공진기를 이용한 YBCO 박막 두께의 비파괴적 측정: 캘리브레이션 박막 두께의 불확도의 역할)

  • Kim, Myung-Su;Jung, Ho-Sang;Yang, Woo-Il;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • Microwave metrology for the thickness of metallic or superconductive films provides a new way to measure the film thickness in a non-invasive way by using microwave resonators, with the measurement accuracy affected by standard uncertainties in the resonator quality factor, temperature-dependent resonant frequency and the dimensions of the resonators. Here we study effects of the standard uncertainty in the thickness, $t_{cal}$, of a calibration $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) film on the measured thicknesses, $t_{RF}$, by using a ~ 40 GHz microwave resonator. For the study, we used five YBCO films having the thicknesses of 70 - 360 nm, for which relative standard uncertainties in $t_{RF}$ due to that in $t_{cal}$ are obtained. The standard uncertainty in $t_{cal}$ was determined with the surface roughness of the film taken into account. It appeared that relative standard uncertainty in $t_{cal}$ significantly affects the $t_{RF}$ values, with the values of 1% (5%) in the former resulting in those of 1-2% (5-9%) for the latter at 10 K. Our results show that, for realizing relative standard uncertainties less than 5% in $t_{RF}$ for all the YBCO films, the surface roughness of the calibration films should be small enough to realize a relative standard uncertainty of less than 2.7% in $t_{cal}$.

In-Process Evaluation of Surface Characteristics in Machining

  • Jang, Dong-Young;Hsiao, Alex
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.99-107
    • /
    • 1995
  • This paper reported research results to develop an algorithm of on-lin evaluation of surface profiles and roughness generated by turning. The developed module consisted of computer simulation of surface profiles using mechanism of cutting mark formation and cutting vibrations, and online measurement of cutting vibrations. The relative cutting vibrations between tool and worpkiece were measured through an inductance pickup at the rate of one sample per rotation of the workpiece. The sampling process was monitored using an encoder to avoid conceling out the phase lag between waves. The digital cutting signals from the Analog-to-Digital converter were transferred to the simulation module of surface profile where the surface profiles were generated. The developed algorithm or surface generation in a hard turning was analyzed through computer simulations to consider the stochastic and dynamic nature of cutting process. Cutting tests were performed using AISI 304 Stainless Steel and carbide inserts in practical range of cutting conditions. Experimental results showed good correlation between the surface profiles and roughness obtained using the developed algorithm and the surface texture measured using a surface profilemeter. The research provided the feasibility to monitor surface characteristics during tribelogical tests considering wear effect on surface texture in machining.

Improvement of carrier transport in silicon MOSFETs by using h-BN decorated dielectric

  • Liu, Xiaochi;Hwang, Euyheon;Yoo, Won Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.97-97
    • /
    • 2013
  • We present a comprehensive study on the integration of h-BN with silicon MOSFET. Temperature dependent mobility modeling is used to discern the effects of top-gate dielectric on carrier transport and identify limiting factors of the system. The result indicates that coulomb scattering and surface roughness scattering are the dominant scattering mechanisms for silicon MOSFETs at relatively low temperature. Interposing a layer of h-BN between $SiO_2$ and Si effectively weakens coulomb scattering by separating carriers in the silicon inversion layer from the charged centers as 2-dimensional h-BN is relatively inert and is expected to be free of dangling bonds or surface charge traps owing to the strong, in-plane, ionic bonding of the planar hexagonal lattice structure, thus leading to a significant improvement in mobility relative to undecorated system. Furthermore, the atomically planar surface of h-BN also suppresses surface roughness scattering in this Si MOSFET system, resulting in a monotonously increasing mobility curve along with gate voltage, which is different from the traditional one with a extremum in a certain voltage. Alternatively, high-k dielectrics can lead to enhanced transport properties through dielectric screening. Modeling indicates that we can achieve even higher mobility by using h-BN decorated $HfO_2$ as gate dielectric in silicon MOSFETs instead of h-BN decorated $SiO_2$.

  • PDF

Study on Optical Properties of Lithium niobate using Chemical Mechanical Polishing (화학 기계적 연마에 의한 리튬 니오베이트의 광학 특성에 관한 연구)

  • Jeong, Suk-Hoon;Kim, Young-Jin;Lee, Hyun-Seop;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.121-122
    • /
    • 2008
  • Lithium Niobate (LN:LiNbO3) is a compound of niobium, lithium and oxygen. The characteristics of LN are piezoelectricity, ferroelectricity and photoelectricity, and which is widely used in surface acoustic wave (SAW). To manufacture LN device, the LN surface should be a smooth surface and defect-free because of optical property, but the LN material is processed difficult by traditional processes such as grinding and mechanical polishing (MP) because of its brittleness. To decrease defects, chemical mechanical polishing (CMP) was applied to the LN wafer. In this study, the suitable parameters scuh as pressure and relative velocity, were investigated for the LN CMP process. To improve roughness, the LN CMP was performed using the parameters that were the highest removal rate among process parameters. And, evaluation of optical property was performed by the optical reflectance and non-linear characteristic.

  • PDF

Micromorphometric change of implant surface conditioned with tetracycline-HCI;Hydroxyapatite surface (염산 테트라싸이클린이 HA 임플란트 표면구조에 미치는 영향)

  • Yang, Dong-Il;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.779-789
    • /
    • 2007
  • The present study was performed to evaluate the effect of Tetracycline-HCI on the change of implant surface microstructure according to application time. Implant with hydroxyapatite surface was were utilized. Implant surface was rubbed with 50mg/ml Tetracycline-HCI solution and sterilized saline for ${\frac{1}{2}}min.$, 1min., $1{\frac{1}{2}}min.$, 2min., $2{\frac{1}{2}}min.$, and 3min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation and measured surface roughness by optical interferometer. The results of this study were as follows. 1. Hydroxyapatite surface showed that round particles were deposited irregularly. 2. The roughness of surfaces conditioned with Tetracycline-HCI and saline was lessened and the cracks were increased relative to the application time. In conclusion, the detoxification with 50mg/ml Tetracycline-HCI must be applied respectively with appropriate time according to hydroxyapatite implant surfaces.

Effects of Acid Treatment of Carbon on Electroless Copper Plating (피도금 탄소재의 산처리가 무전해 동도금에 미치는 영향)

  • Shin, Ari;Han, Jun Hyun
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.265-273
    • /
    • 2016
  • The effects of surface modification by nitric acid on the pre-treatment of electroless copper plating were investigated. Copper was electroless-plated on the nitric acid treated graphite activated by a two-step pre-treatment process (sensitization + activation). The chemical state and relative quantities of the various surface species were determined by X-ray photoelectron spectroscopy (XPS) after nitric acid modification or pre-treatment. The acid treatment increased the surface roughness of the graphite due to deep and fine pores and introduced the oxygen-containing functional groups (-COOH and O-C=O) on the surface of graphite. In the pre-treatment step, the high roughness and many functional groups on the nitric acid treated graphite promoted the adsorption of Sn and Pd ions, leading to the uniform adsorption of catalyst ($Pd^0$) for Cu deposition. In the early stage of electroless plating, a lot of tiny copper particles were formed on the whole surface of acid treated graphite and then homogeneous copper film with low variation in thickness was formed after 30 min.

Evaluation of Micro End-Milling Characteristics of AlN-hBN Composites Sintered by Hot-Pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 가공특성 평가)

  • Baek, Si-Young;Cho, Myeong-Woo;Seo, Tae-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.390-401
    • /
    • 2008
  • The objective of this study is to evaluate various machining characteristics of AlN-hBN machinable ceramics in micro end-milling process for its further application. First, AlN based machinable ceramics with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Material properties of the composites, such as relative density, Vickers hardness, flexural strength, Young's modulus and fracture toughness were measured and compared. Then, micro end-milling experiments were performed to fabricate micro channels using prepared system. During the process, cutting forces, vibrations and AE signals were measured and analyzed using applied sensor system. Machined micro channel shapes and surface roughness were measured using 3D non-contact type surface profiler. From the experimental results, it can be observed that the cutting forces, vibrations and AE signal amplitudes decreased with increasing hBN contents. Also, measured surface roughness and profiles were improved with increasing hBN contents. As a result of this study, optimum machining conditions can be determined to fabricate desired products with AlN-hBN machinable ceramics based on the experimental results of this research.

A Semi-empirical Model for Microwave Polarimetric Radar Backscattering from Bare Soil Surfaces

  • Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.17-35
    • /
    • 1994
  • A semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarmetric radar measurements and the knowledge based on the theoretical and numerical solutions. The microwave polarimetric backscatter measurements were conducted for bare soil surfaces under a variety of roughness and moisture conditions at L-, C-, and X-band frequencies at incidence angles ranging from 10` to 70`. Since the accrate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected using a laser profile meter and dielectric probes for each surface condition, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. At first, the angular and spectral dependencies of the measured radar backscatter for a wide range of roughnesses and moisture conditions are examined. Then, the measured scattering behavior was tested using theoretical and numerical solutions. Based on the experimental observations and the theoretical and numerical solutions, a semi-empirical model was developed for backscattering coeffients in terms of the surface roughness parameters and the relative dielectric constant of the soil surface. The model was found to yield very good agreement with the backscattering measurements of this study as well as with independent measurements.

A Study on Comparison of the Darcy-Weisbach and Hazen-Williams Equation (Darcy-Weisbach와 Hazen-Williams Equation 비교 연구)

  • Kim, Tae-Kyoungi;Rhee, Kyoung-Hoon;Sun, Byoung-Jin;Chio, Cheong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.421-428
    • /
    • 2007
  • Many engineering problems on the pipeline flow use continuity, energy, friction loss head equation. To calculate friction loss head in a pipeline, Darcy-Weisbach and many average velocity equations can be used and Hazen-Williams equation is used frequently in the pipe network for the water supply systems. Darcy-Weisbach equation is a general one acquired from applying Bernoulli's equation in the pipeline flow and Hazen-Williams equation is a experimental one in case that pipe velocity is below 3m/sec and pipe diameter is over 50mm. In this study, comparing Darcy-Weisbach with Hazen-Williams equation, relation f and C that are expressed as roughness coefficients of those equations is explained. Next, head losses calculated from using those equations are compared and those are applied in realistic pipelines. Comparing f with C, the f is decreasing linearly according to increase of the Reynolds number Re and increasing in case the C is decreasing. additionally, the C is increasing up to a point and then is decreasing according to increase of the Re. Next, the C is increasing and Re's range for increase of the C lengthens in case of decreasing of the relative roughness ${\varepsilon}/d$. Comparing head losses acquired from the two equations, head loss appears large in case that the C is decreasing and the ${\varepsilon}/d$ is increasing. additionally, Head loss calculated by the Darcy-Weisbach equation varies larger than one by Hazen-Williams equation in regard of the Re. Next, change aspect of head loss acquired by the C is distinguished more clearly than the one by the ${\varepsilon}/d$.

Pad Surface Characteristics and their Effect on Within Wafer Non-Uniformity in Chemical Mechanical Polishing (화학 기계적 연마에서 패드표면 특성이 웨이퍼 불균일도에 미치는 영향)

  • Jeong, Suk-Hoon;Lee, Hyun-Seop;Jeong, Moon-Ki;Shin, Woon-Ki;Lee, Sang-Jik;Park, Boum-Young;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.58-58
    • /
    • 2009
  • Uniformity related issues in chemical mechanical polishing (CMP) are within wafer non-uniformity (WIWNU), wafer to wafer non-uniformity (WTWNU), planarity and dishing/erosion. Here, the WIWNU that originates from spatial distribution of independent variables such as temperature, sliding distance, down force and material removal rate (MRR) during CMP, relies to spatial dependency. Among various sources of spatial irregularity, hardness and modulus of pad and surface roughness in sources for pad uniformity are great, especially. So, we investigated the spatial variation of pad surface characteristics using pad measuring system (PMS) and roughness measuring system. Reduced peak height ($R_{pk}$) of roughness parameter shows a strong correlation with the removal rate, and the distribution of relative sliding distance onwafer during polishing has an effect on the variation of $R_{pk}$ and WIWNU. Also, the results of pad wear profile thorough developed pad profiler well coincides with the kinematical simulation of conditioning, and it can contribute for the enhancement of WIWNU in CMP process.

  • PDF