• Title/Summary/Keyword: related document retrieval

Search Result 49, Processing Time 0.022 seconds

Document Retrieval using Concept Network (개념 네트워크를 이용한 정보 검색 방법)

  • Hur, Won-Chang;Lee, Sang-Jin
    • Asia pacific journal of information systems
    • /
    • v.16 no.4
    • /
    • pp.203-215
    • /
    • 2006
  • The advent of KM(knowledge management) concept have led many organizations to seek an effective way to make use of their knowledge. But the absence of right tools for systematic handling of unstructured information makes it difficult to automatically retrieve and share relevant information that exactly meet user's needs. we propose a systematic method to enable content-based information retrieval from corpus of unstructured documents. In our method, a document is represented by using several key terms which are automatically selected based on their quantitative relevancy to the document. Basically, the relevancy is calculated by using a traditional TFIDF measure that are widely accepted in the related research, but to improve effectiveness of the measure, we exploited 'concept network' that represents term-term relationships. In particular, in constructing the concept network, we have also considered relative position of terms occurring in a document. A prototype system for experiment has been implemented. The experiment result shows that our approach can have higher performance over the conventional TFIDF method.

Incorporating Deep Median Networks for Arabic Document Retrieval Using Word Embeddings-Based Query Expansion

  • Yasir Hadi Farhan;Mohanaad Shakir;Mustafa Abd Tareq;Boumedyen Shannaq
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.3
    • /
    • pp.36-48
    • /
    • 2024
  • The information retrieval (IR) process often encounters a challenge known as query-document vocabulary mismatch, where user queries do not align with document content, impacting search effectiveness. Automatic query expansion (AQE) techniques aim to mitigate this issue by augmenting user queries with related terms or synonyms. Word embedding, particularly Word2Vec, has gained prominence for AQE due to its ability to represent words as real-number vectors. However, AQE methods typically expand individual query terms, potentially leading to query drift if not carefully selected. To address this, researchers propose utilizing median vectors derived from deep median networks to capture query similarity comprehensively. Integrating median vectors into candidate term generation and combining them with the BM25 probabilistic model and two IR strategies (EQE1 and V2Q) yields promising results, outperforming baseline methods in experimental settings.

Development of Similar Bibliographic Retrieval System based on Neighboring Words and Keyword Topic Information (인접한 단어와 키워드 주제어 정보에 기반한 유사 문헌 검색 시스템 개발)

  • Kim, Kwang-Young;Kwak, Seung-Jin
    • Journal of Korean Library and Information Science Society
    • /
    • v.40 no.3
    • /
    • pp.367-387
    • /
    • 2009
  • The similar bibliographic retrieval system follows whether it selects a thing of the extracted index term and or not the difference in which the similar document retrieval system There be many in the search result is generated. In this research, the method minimally making the error of the selection of the extracted candidate index term is provided In this research, the word information in which it is adjacent by using candidate index terms extracted from the similar literature and the keyword topic information were used. And by using the related author information and the reranking method of the search result, the similar bibliographic system in which an accuracy is high was developed. In this paper, we conducted experiments for similar bibliographic retrieval system on a collection of Korean journal articles of science and technology arena. The performance of similar bibliographic retrieval system was proved through an experiment and user evaluation.

  • PDF

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

Medicine Ontology Building based on Semantic Relation and Its Application (의미관계 정보를 이용한 약품 온톨로지의 구축과 활용)

  • Lim Soo-Yeon;Park Seong-Bae;Lee Sang-Jo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.428-437
    • /
    • 2005
  • An ontology consists of a set and definition of concepts that represents the characteristics of a given domain and relationship between the elements. To reduce time-consuming and cost in building ontology, this paper proposes a semiautomatic method to build a domain ontology using the results of text analysis. To do this, we Propose a terminology processing method and use the extracted concepts and semantic relations between them to build ontology. An experiment domain is selected by the pharmacy field and the built ontology is applied to document retrieval. In order to represent usefulness for retrieving a document using the hierarchical relations in ontology, we compared a typical keyword based retrieval method with an ontology based retrieval method, which uses related information in an ontology for a related feedback. As a result, the latter shows the improvement of precision and recall by $4.97\%$ and $0.78\%$ respectively.

Retrieval algorithm for Web Document using XML DOM (XML DOM을 이용한 웹문서 검색 알고리즘)

  • 김노환;정충교
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.6
    • /
    • pp.775-782
    • /
    • 2001
  • Until recently Web retrieval engine has presented a demanded document to users according to the amount and the frequency of inquired key words in each document under the assumption that the more key words a document has, the more accessible it is. This method of searching doesn't matter to a normal document such as HTML Web data in which structural information is not involved. However, Web data realized in XML contains structural information and modeling of graphic forms is also available. Therefore, in the case of XML, this method leads to no less trouble since it depends only on the frequency of key words. We consider that this problem can be resolved by way of inquiry which is similar to SQL. This form of inquiry enables us to snatch an exact data we want in a quick and clear way with a full advantage of structural quality of XML, overcoming the shortcomings of frequency-based engine. In this paper, We aim to design a model of information retrieval system of XML data using XML DOM and consider its algorithm related with it.

  • PDF

Efficient Retrieval of Short Opinion Documents Using Learning to Rank (기계학습을 이용한 단문 오피니언 문서의 효율적 검색 기법)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.117-126
    • /
    • 2013
  • Recently, as Social Network Services(SNS), such as Twitter, Facebook, are becoming more popular, much research has been doing on opinion mining. However, current related researches are mostly focused on sentiment classification or feature selection, but there were few studies about opinion document retrieval. In this paper, we propose a new retrieval method of short opinion documents. Proposed method utilizes previous sentiment classification methodology, and applies several features of documents for evaluating the quality of the opinion documents. For generating the retrieval model, we adopt Learning-to-rank technique and integrate sentiment classification model to Learning-to-rank. Experimental results show that proposed method can be applied successfully in opinion search.

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

Evaluation of the Newspaper Library -With Emphasis on the Document Delivery Capability and Retrieval Effectivenss- (신문사 자료실에 대한 평가 -문헌전달능력과 검색효율을 중심으로-)

  • 노동조
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.7 no.1
    • /
    • pp.319-351
    • /
    • 1994
  • This rearch is a case study for the newspaper libraries in Seoul and the primary purpose of the this study are to investigate its document delivery capability. To achieve the above-mentioned purpose, representative rsers visited seven the newspaper library and checked their searching time. Document delivery capability was checked by units of hour, minute, second(searching time). Retrieval effectiveness was tested through the recall ratio and the precision ratio. The major findings of the study are summarized as follows: 1) Most of the newspaper libraries excellent to the document delivery capability; 6 newspaper libraries deliverived the data related subject. 2) The newspaper libraries were came out 50.1% the mean recall ratio and 84.8% the mean precision ratio about the all materials. 3) Concerned their own articles, the newspaper libraries showed 71.4% the recall ratio and 90.0% the precision ratio. That moaned their own articles were more effectived than others. 4) The Kookmin Ilbo library had the most excellent system, and the precision ratio of The Dong-A Ilbo library prior to the recall ratio. The Han Kyoreh Shinmun library had a excellent arragement in own articles, but The Segye Times library had problem in every parties.

  • PDF