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LATENT SEMANTIC INDEXING AND
LINEAR RELEVANCE FEEDBACK
IN TEXT INFORMATION RETRIEVAL THEORY

KICHOON YANG

ABSTRACT.. We give a mathematically rigorous description of the
recently popular latent semantic indexing (LSI) method in téxt in-
formation retrieval theory. Also, a related problem of finding & doc-
ument ranking function in linear relevance feedback is discussed.

1. Introduction

Text information retrieval focuses on the problem of retrieving docu-
ments relevant to a user need represented by a set of keywords known as
a query. In the popular vector space model of information retrieval both
documents and the query are represented as vectors in the keyword vector
space; then the relation -between a documenﬂ and the query is measured
either by their dot product or other related measures such; as the cosine
of the angle between the two vectors. However, an 1mplementatmn of
the vector space model relying solely on keyword matching often fails to
find relevant documents or return too many irrelevant documents. One
reason for this failure is the so called synonymy problem, meaning that a
single concept or object has many different terms associated with it. For
example, several empirical studies show that the likelihood of two people
choosing the same keyword for a familiar object is less than 15%. The
latent semantic indezing (LSI) method is an attempt to solve the syn-
onymy problem whilst staying within the vector space model framework.
Unlike many previous attempts the latent indexing method is more auto-
mated and numerically simpler. In this paper, we give a mathematically
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rigorous description of the latent semantic indexing method and identify
several problems.

One important task in information retrieval is to produce a ranking
of the documents according to user preference so that the user will be
able to find the required information by looking only at the top several
documents. The problem, however, is that the user preference is never
fully known to the retrieval system since the user can not fully specify his
preference without having examined all the documents in the collection.
This motivates a recursive strategy where the retrieval system learns
about the user preference from a training set of sample documents. Such
a system can learn and refine the document ranking function it uses
to rank the documents; once a satisfactory set of documents has been
retrieved the user can stop the recursion. In the paper, we discuss one
such recursive strategy.

2. The latent semantic indexing method

Suppose we are given a document collection A = {D;, 1 < i < d} and
a set of keywords © = {T}, 1 < j < d} used to describe the documents.
We identify the keywords T; with the canonical basis vectors §;, 1 <
j < t, of Rt Then a document or a query D is identified with a vector,
which we again denote by D, in R! as follows:

D= (D’) = Djdj € R, DY = the term weight of T} in D,

where the term weight measures the importance of a term in the docu-
ment. There are many different ways to assign term weights. For exam-
ple, one may simply define D’ to be the number of times T; appears in
the document.

Once a term weighting scheme has been chosen there arises the fol-
lowing ¢t x d matrix called the term-document matriz:
D} ces sz
X=1 : : | =(Dy,---,Dqg) € M(t xd).
Dt ... Dy
In the above, M (t x d) denotes the set of all ¢ x d matrices.

A query vector, also called a pseudo-document, is a vector ¢ € R* that
is given by the user. Two most popular ways of comparing documents
with the query vector are the cosine similarity and the dot product
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similarity. In the case of cosine similarity one looks at the cosine of the
angle between the query vector and each document in A, whereas in
the dot product similarity the documents are ranked in order of the dot
product D;-q. We will work with the dot product similarity throughout
- we do this largely for the sake of expositional simplicity rather than
for substantive reasons.

Let

612022--20,>0, r=rank(X),

denote the nonzeto singular values of X, and consider the singular value
decomposition of X: » ' ’

X =UzV",

where U € M (t x r) with orthonormal columns, V € M (d x r) with
orthonormal columns, and ¥ € M (r x r) is the positive definite diagonal
matrix given by

(251
Y=
Or

DEFINITION 1. The k-th singular approximation of X, where k < r,
is defined to be

X = UiV,

where Uy € M (t x k) and Vi € M (d x k) are obtained simply by re-
moving the last (r — k) columns and Z; is the k x k diagonal matrix
consisting of the first k singular values in the diagonal entries.

Let (¢;) denote the canonical basis vectors for R? and put
s = (si5) = (X (&) - X (&5)) = X*X.
Given a linear surjection
¢: R — RF
we set

8¢ = (8413) = (3 (X (), (X (7)) -
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We define the distance between s and s; to be the Euclidean distance

in R?, ie.,
d(s,sg) = /Z(sn S¢is)’

We then have the following remarkable result regarding the k-th singular
approximation.

THEOREM 2. Let ¢ : R® — R* be given by the matrix U}, where
Ur € M (t x k) is the matrix arising in the k-th singular approximation
of X. Then d(s,s,) is minimal as ¢ varies over all linear surjections

Rt — Rk,

In the statement of the above theorem and in the preceding discussion
we have used the following standard identifications:

M (m x n) = Hom (R*,R™),

M (m x n) =R™,

The latter identification is made simply by ordering the matrix entries
lexicographically. To make the former identification explicit, let (&;), ;.
denote the canonical basis of R™ and also let (9;),,.,, denote the canon-
ical basis of R™. Then given any linear map ¢ : R® — R™ we can
associate an element (¢}) of M (m x n) as follows:

P (&) = Z#‘sj-

The above theorem follows essentially from the following two proposi-
tions.

PROPOSITION 3. Let X be as in the above. Then d (X, X}) is mini-
mal as X varies over all t x d matrices of rank k, where d denotes the
Euclidean distance in R%.

PROPOSITION 4. Let ¢ = Ut : Rt — R*, and consider X = UtX €
M (k x d). Then X*X = X! X, € M (d x d).

The above theorem provides a mathematical basis for the LSI method.
By taking k strictly smaller than the rank of the term-document matrix
and replacing the term-document matrix accordingly, one is able to take
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into account the wnderlying semantic structure instead of considering
merely the raw term matches between the query and the documents.

As an example, consider the following document collection - this ex-
ample appears’in [Dumais et al.]. There are nine documents and twelve
keywords, having to do with two rather different topics, computer-human
interface and mathematical graph theory. The document collection is

given by:

cl:
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system

c4: Systems and human systems engineering testing of EPS-2
c5:
ml: The generation of random, binary, unordered trees

m2: The intersection graph of paths in trees L

m3: Graph minors IV: Widths of trees and well-quasi-ordering
md: Graph minors: A survey

Human machine interface for Lab ABC computer applications

Relation of user-perceived response time to error measurement

The twelve keywords are:

e tl:
e t2:
o t3:
o t4:
o t5:
o t6:
e t7:
o t8&:
o t9:

human
interface
computer
user
system
response
time
EPS
survey

o t10: tree
e t11: graph
e t12: minor

Note that if a user requested papers dealing with “human computer
interaction,” a keyword-based retrieval system would return titles cl,
c2, and c4, since these titles contain at least one keyword from the user
query. However, ¢3 and ¢5 would not be returned, since they share no
words with the query.
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Using the raw term-frequency indexing we obtain the following ¢ x d
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term-document matrix X witht =12 and d = 9:

Note that the query vector corresponding to “human computer inter-

action” is given by

and that

Calculations show that the rank of X is full and that its two largest

0

1
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q:(1701170"" 70)t GRI‘Z,

g-A;=0unless i =1,2,4.
Indeed g- Ay =2and q- Ay =¢q- Ay = 1.

singular values are 3.34 and 2.54.
The second singular approximation of X is given by:

[ 0.22
0.2
0.24
0.4
0.64
0.27
0.27
0.3
0.21
0.01
0.04
| 0.03

'X2=

-0.11 7
—0.07
0.04
0.06
—0.17
0.11
0.11
—0.14
0.27
0.49
0.62

0.45 |

|

3.34
0

0
2.54

|

[ 0.2
0.61
0.46
0.54
0.28
0
0.01
0.02

| 0.08

—0.06 T
0.17
—0.03
—0.23
0.11
0.19
0.44
0.62
0.53
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From this we calculate the new dot matrix similarity measures for the
nine documents:

(¢-Xa) = (0.31 0.91 0.74 0.88 042 —0.03 —0.06 —0.07 0.03).

Thus the relevant documents, with respect to the new term-document
matrix X, and in the order of their relevance, are c2, c4, ¢3, ¢5, and cl.

Note that if k is too large (i.e., too close to ), then we lose the
latent semantic structure; on the other hand, if k is too small, then
the modified document vectors may ‘be too removed from the original
documents. Thus it is critical that there be some criteria for choosing
the number k - this is an outstanding problem in the theory of latent
semantic indexing. :

There are other ways of looking at the lower rank approximation
problem. For example, put

M = M (t x d) = the set of all ¢ x d matrices = R*,
and consider
M), = the subset consisting of all rank at most k matrices C M.

Note that My — M;_, is the set of all ¢t x d matrices of rank exactly k.
Several observations are in order. To begin with, the sets M, C M = R%
are homogeneous affine varieties as they are defined by setting all k x k
minors equal to zero. The set My — M;_; is a generic subset of M -
in particular, it is open and dense in M - as M;_, is a Zariski subset.
From these considerations we obtain the following theorem.

THEOREM 5. The minimum Euclidean distance between an element
X € M, — M,_, and the subset M, is attained along a subvariety Z;
intersecting My — My..;.

Note that X; € Zy N (M — Mi_;). It would be interesting to analyze
the structure of Z N (M — M;_;) and compare its elements with the
k-th singular approximation of X.

3. Linear relevance feedback

Suppose we are given a collection of documents A = {D;, 1 <i < d}.
Further suppose that the user is searching for documents that are rele-
vant to a fixed query ¢q. Given two documents the user may prefer one
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document over the other, or may decide that he is unable to make the
comparison between the two. We are discounting the possibility that the
user will find the two documents equally relevant. We do this primarily
for the sake of expositional clarity. After all, it is not difficult to incorpo-
rate such possibilities into our theory by introducing equivalence classes
of documents. These considerations lead to the following definition:

DEFINITION 6. Given a document collection A = {D;} a user pref-
erence (associated with a query g) is a partial order < on A so that

D; < D, means that the user prefers D to Ds.

Thus a user preference relation makes the document collection A into
a poset (A, <). Given such a poset (A, <) a document ranking function
is any map

p:A—R
such that
p (D) < p(D;) whenever D; < D,.

Document ranking functions always exist: one merely goes through each
linear subchain in (A, <) and assign values monotonically within the
linear chain. However, we would like to work with linear document
ranking functions, if at all possible.

DEFINITION 7. Given a document collection (A, <), a linear docu-
ment ranking function is a document ranking function of the form

P:flAv

where f : R® — R is a linear map.

Recall that any linear map R* — R is of the form
z = (') — Zaizi

for some constant vector a = (a;) € R®. Thus we may write the map p
as

pe(D)=a-D, DeA

for some fixed vector a € R®.
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The problem with coming up with a linear document ranking function
(or for that matter, any document ranking function) is that in practice
the user preference is never completely known to the retrieval system as
the user is unable to examine all the documents - or even a significant
number - in the document collection previous to the search. The idea
behind the method of relevance feedback is to use a recursive process
that goes something like this: ‘ ’

1. At each step a document ranking function which is consistent with
a sample set of documents (i.e., a training set where the user spec-
ifies his preference fully) is found ‘

2. More documents are retrieved using the document rankmg func-

“tion thus obtained, and the retrieved documents become the new
training set;

3. The process continues until the user is satxsﬁed with the documents
retrieved.

In linear relevance feedback we would want to find a linear document
ranking function at each step of the above recursive process. Indeed
following [Wong-Yao] we now describe an algorithm where the document
ranking function is given by p, (D) = ¢-D with q a modified query vector.

DEFINITION 8. Suppose A; C A is a subset of documents, where the
user preference is fully known. Then a vector ¢ € R® is called a query
vector associated with A, if p, is a document ranking functlon when
restricted to A;.

An important problem in the theory of linear relevance feedback is to
find natural criteria under which there exists a query vector associated
with an arbitrary subset A; of A. Given a fixed subset A; however, the
existence (and uniqueness) problem for the associated query vectors is
not a difficult problem. To see this, put

Bi={b=D-D:D',De A, D=<D}cCR".
The following result is easy.

LEMMA 9. A vector g € R is a query vector associated with A, if
and only if

*) q-b> 0 for every b € B;.
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Note that () is a system of linear inequalities on R!; as such the
solutions define a convex region in R, possibly empty. Supposing that
this system is consistent we now describe an algorithm for finding a
solution:

1. Set g = go (g0 may be given by the user).

2.Set Bf={b=D'-D:D',De A, D<D and g -b<0}.
3. If Bf = 0, then set g = ¢, and stop.

4. Set Qr+1 = Qx + ZbeB{‘ b.

5. Set k =k + 1 and go back to Step 2.

It would be interesting to find natural conditions under which the
above algorithm terminates in finitely many steps. We caution the reader
that in [Wong-Yao] the notion of a user preference is defined somewhat
differently. Essentially, a user preference for them is a linear chain with
equivalence classes, which, we feel, may be too restrictive. They then
impose an extra condition on the user preference called weak linearity to
guarantee that the above algorithm terminates in finitely many steps.

On occasion it may be necessary to consider higher order document
ranking functions.

DEFINITION 10. Given (A, <) an n-th order document ranking func-
tion is a map
AMACR —R
given as a restriction to A of an n-th order polynomial (not necessarily
homogeneous but without a constant term) in ¢ variables.

More explicitly, we can write

n
Az) = Eaﬂ:], z = (z7) e R,
[JI=1
where J is a multi-index of order |J| and not all the leading degree
terms are zero. We conjecture that given any document collection (A, <)
there always is a document ranking function of sufficiently high order
associated with it.
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