• 제목/요약/키워드: reinforced concrete infilled frame structure

검색결과 24건 처리시간 0.026초

메움벽에 의한 R/C 골조의 내진성능 평가에 관한 연구 (Experimental Study of Infilled Wall in Reinforced Concrete Structure)

  • 김석균;김정한;김영문
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.403-406
    • /
    • 1999
  • Although infilled wall considered as a non-structural element, the infilled applied in reinforced concrete frame structural systems represents an important element influencing the behaviour and the stability of a structure under seismic effect. This research is performed an experimental investigation of gravity-load designed single-stroy, single-bay, low-rise nonseismic moment-resisting reinforced concrete frame 2 dimension specimens to evaluate the effect of seismic capacity. For pseudo static test, it was manufactured one half scale specimens of two types (Bare Frame, Infilled Frame) based on typical building. The results of these experiments provided regarding the global as well as the local responses of 1) Crack pattern and failure modes, 2) Stiffness, strength.

  • PDF

현장타설 끼움 벽으로 보강된 비내진 상세를 갖는 철근콘크리트 골조의 내진거동 (Seismic Behavior of Non Ductile Reinforced Concrete Frame Retrofitted With Cast-In Place Infilled Shear Wall)

  • 이혜연;김선우;한병찬;윤현도;최창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.453-456
    • /
    • 2004
  • RC frames built prior to the advent of the philosophy of ductile concrete is one type of existing construction susceptible to damage. Strengthening and stiffening of such frames has been accomplished by infilled frames with cast-in-place, reinforced concrete walls. Placement of CIP shear walls within strategic bays of a structure appears to be a logical and economical method to strengthen a reinforced concrete frame and to stiffen a building in order to reduce architectural and mechanical damage. This study investigates the seismic performance of cast-in place infilled shear wall within existing frames. The object of this study is to clarify the seismic capacity and characteristics in the hysteretic behavior of bare frame, CIP infilled shear wall and CIP infilled wall reinforced diagonal bars.

  • PDF

Discontinuous deformation analysis for reinforced concrete frames infilled with masonry walls

  • Chiou, Yaw-Jeng;Tzeng, Jyh-Cherng;Hwang, Shuenn-Chang
    • Structural Engineering and Mechanics
    • /
    • 제6권2호
    • /
    • pp.201-215
    • /
    • 1998
  • The structural behavior of reinforced concrete frame infilled with a masonry wall is investigated by the method of discontinuous deformation analysis (DDA). An interface element is developed and it is incorporated into DDA to analyze the continuous and discontinuous behavior of the masonry structure. The numerical results are compared with previous research and possess satisfactory agreement. Then the structural behavior and stress distribution of a reinforced concrete frame infilled with a masonry wall subjected to a horizontal force are studied. In addition, the justification of equivalent strut is assessed by the distribution of principal stresses. The results show that the behavior of the masonry structure is highly influenced by the failure of mortar. On the basis of the distribution of principal stress of the masonry wall in the reinforced concrete frame, the equivalent strut can be approximately substituted for the masonry wall without separation and opening. However, the application of equivalent strut to the masonry wall with separation and opening needs further study.

블록 끼움벽과 현장타설 끼움벽으로 보강된 비내진 상세 철근콘크리트 골조의 구조성능에 관한 실험적 연구 (An Experimental Study on the Structural Performance of Lightly Reinforced Concrete Frame Retrofitted with Concrete Block and Cast-In Place Infilled Wall)

  • 최창식;이혜연;김선우;윤현도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.199-206
    • /
    • 2005
  • 끼움벽에 의한 내진보강은 국외에서는 내진 보강공법 중 가장 널리 사용되어지는 신뢰성 있는 공법이나 국내에서는 아직 비내진 상세를 갖는 골조의 내진보강에 대한 분석이 미흡한 실정이다. 따라서 본 연구에서는 재생세골제를 사용한 끼움벽과 현장타설 철근콘크리트 끼움벽의 반복 횡하중 실험을 통하여 끼움벽의 구조성능을 비교분석하였다. 실험결과 두 실험체 모두 기존골조와 비교하여 크게 향상된 성능을 나타냈으며 특히 현장타설 끼움벽 실험체는 순수골조 실험체에 비하여 강도 및 초기강성이 각각 3.8배, 6.6배 향상하며 파괴 시까지 안정적인 거동을 보여 기존골조의 내진보강공법으로 합리적인 것으로 판단되었다.

Earthquake Simulation Tests of a 1 :5 Scale 3-Story Masonry-Infilled Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.153-164
    • /
    • 1999
  • The objective of this research is to observe the actual response of a low-rise nonseismic moment-resisting masonry-infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. The reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N2IE component earthquake ground motion, whose peak ground acceleration(PGA) was modified to 0.12g, 0.2g, 0.3g, and 0.4g. The g1oba1 behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of the structure were measured. Before and after each earthquake simulation test, free vibration tests and white noise tests were performed to find the changes in the natural period of the model. When the results of the masonry-infilled frame are compared with those of the bare frame, it can be recognized that masonry infills contribute to the large increase in the stiffness and strength of the g1oba1 structure whereas it also accompanies the increase of earthquake inertia forces. However, it is judged that masonry infills may be beneficial to the performance of the structure since the rate of increase in strength appears to be greater than that of the induced earthquake inertia forces.

  • PDF

1:12축소 10층 조적 채움 R.C. 골조의 비선형 거동에 대한 실험과 해석의 상관성 (Correlation of Experimental and Analytical Inelastic Responses of A 1:12 Scale 10-Story Masonry-Infilled Reinforced Concrete Frame)

  • 이한선;김정우
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.101-112
    • /
    • 2000
  • In many structures, the masonry infill panels have been used for architectural reasons and their influence on the structure is often ignored by engineers. However, it has been recognized that the presence of masonry infills may debates. Recently, the pushover analysis technique is used for the prediction of the inelastic behaviors of structures in the seismic evaluation of existing buildings. However, the reliability of this analysis method has not been fully checked with the test results, particularly in the case of masonry-infilled frames. The objective of this study is to verify the correlation between the experimental and analytical reponses of a high-rise masonry-infilled reinforced concrete frame using DRAIN-2DX program and the test results performed previously. It is concluded from this comparison that the strength and stiffness of members can be predicted with quite high reliability while the ductility capacity of members can not be described reasonably.

Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures

  • Mebarek Khelfi;Fouad Kehila
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Reinforced concrete frames with a masonry infill panel is a structural typology frequently used worldwide. In seismic cases, the interaction between the masonry infill and the RC frames constitutes one of the most complex subjects in earthquake engineering. In this work, an enhancement of an existing numerical model is proposed to improve the estimation of lateral strength and stiffness of masonry-infilled frame structures and predict their probable failure modes. The proposed improvement is based on attributing corrective coefficients to the shear strength of each diagonal shear spring of the macro element, which simulates the masonry infill. The improved numerical model is validated by comparing the results with those of the original numerical model and with experimental results available in the literature. The enhanced macro element model can be used as a powerful, accessible tool for assessing the capacity and stiffness of masonry-infilled frame structures and predicting their probable failure modes.

Application of GMDH model for predicting the fundamental period of regular RC infilled frames

  • Tran, Viet-Linh;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.123-137
    • /
    • 2022
  • The fundamental period (FP) is one of the most critical parameters for the seismic design of structures. In the reinforced concrete (RC) infilled frame, the infill walls significantly affect the FP because they change the stiffness and mass of the structure. Although several formulas have been proposed for estimating the FP of the RC infilled frame, they are often associated with high bias and variance. In this study, an efficient soft computing model, namely the group method of data handling (GMDH), is proposed to predict the FP of regular RC infilled frames. For this purpose, 4026 data sets are obtained from the open literature, and the quality of the database is examined and evaluated in detail. Based on the cleaning database, several GMDH models are constructed and the best prediction model, which considers the height of the building, the span length, the opening percentage, and the infill wall stiffness as the input variables for predicting the FP of regular RC infilled frames, is chosen. The performance of the proposed GMDH model is further underscored through comparison of its FP predictions with those of existing design codes and empirical models. The accuracy of the proposed GMDH model is proven to be superior to others. Finally, explicit formulas and a graphical user-friendly interface (GUI) tool are developed to apply the GMDH model for practical use. They can provide a rapid prediction and design for the FP of regular RC infilled frames.

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.

조적채움벽이 있는 1/5 축소 3층 비연성 철근콘크리트 골조의 진동대 실험 (Shaking Table Test of a 1/5 Scale 3-Story Nonductile infilled Reinforced Concrete Frame)

  • 이한선;우성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.541-546
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA`s) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period of the model.

  • PDF