DOI QR코드

DOI QR Code

Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures

  • Mebarek Khelfi (Department of Civil Engineering, National Earthquake Engineering Research Center) ;
  • Fouad Kehila (Department of Civil Engineering, National Earthquake Engineering Research Center)
  • Received : 2023.04.07
  • Accepted : 2023.08.18
  • Published : 2023.09.25

Abstract

Reinforced concrete frames with a masonry infill panel is a structural typology frequently used worldwide. In seismic cases, the interaction between the masonry infill and the RC frames constitutes one of the most complex subjects in earthquake engineering. In this work, an enhancement of an existing numerical model is proposed to improve the estimation of lateral strength and stiffness of masonry-infilled frame structures and predict their probable failure modes. The proposed improvement is based on attributing corrective coefficients to the shear strength of each diagonal shear spring of the macro element, which simulates the masonry infill. The improved numerical model is validated by comparing the results with those of the original numerical model and with experimental results available in the literature. The enhanced macro element model can be used as a powerful, accessible tool for assessing the capacity and stiffness of masonry-infilled frame structures and predicting their probable failure modes.

Keywords

Acknowledgement

The National Earthquake Engineering Research Center, CGS, Algeria supported this research.

References

  1. 3DMacro (2014), Computer Program for the Seismic Assessment of Masonry Buildings, Release 3.0, Gruppo Sismica s.r.l., Catania, Italy. www.3dmacro.it
  2. Akhoundi, F., Vasconcelos, G., Lourenco, P., Silva, L.M., Cunha, F. and Fangueiro, R. (2018), "In-plane behavior of cavity masonry infills and strengthening with textile reinforced mortar", Eng. Struct., 156, 145-160. https://doi.org/10.1016/j.engstruct.2017.11.002.
  3. Al-Chaar, G., Issa, M. and Sweeney, S. (2002), "Behavior of masonry-infilled nonductile reinforced concrete frames", J. Struct. Eng., 128(8), 1055-1063. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1055).
  4. Al Hanoun, M.H., Abrahamczyk, L. and Schwarz, J. (2019), "Macro modeling of in and out-of-plane behavior of unreinforced masonry infill walls", Bull. Earthq. Eng., 17(1), 519-535. https://doi.org/10.1007/s10518-018-0458-x
  5. Asteris, P.G., Cotsovos, D.M., Chrysostomou, C.Z., Mohebkhah, A. and Al-Chaar, G.K. (2013), "Mathematical micromodeling of infilled frames: State of the art", J. Eng. Struct., 56, 1905-1921. https://doi.org/10.1016/j.engstruct.2013.08.010.
  6. Atkinson, R.H., Amadei, B.P., Saeb, S. and Sture, S. (1989), "Response of masonry bed joints indirect shear", J. Struct. Eng., 115(9), 2276-2296. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2276).
  7. Bergami, A.V. and Nuti, C. (2015), "Experimental tests and global modeling of masonry infilled frames", Earthq. Struct., 9(2), 281-303. https://doi.org/10.12989/eas.2015.9.2.281.
  8. Bhaskar, J.K., Bhunia, D., Karthik, J. and Samadhiya, A. (2022), "A state-of-the-art review on the evolution of performance of masonry infill walls under lateral loadings", Asian J Civ Eng., 23(7), 973-1028. https://doi.org/10.1007/s42107-022-00446-8.
  9. Bouarroudj, M.A. and Boudaoud, Z. (2022), "Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models", Struct. Eng. Mech., 81(2), 131-146. https://doi.org/10.12989/sem.2022.81.2.131.
  10. Calio, I. and Panto, B. (2014), "A macro-element modelling approach of Infilled Frame Structures", Comput. Struct., 143, 91-107. https://doi.org/10.1016/j.compstruc.2014.07.008.
  11. Calio, I., Marletta, M. and Panto, B. (2012), "A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings", Eng. Struct., 40, 327-338. https://doi.org/10.1016/j.engstruct.2012.02.039.
  12. Campione, G., Cavaleri, L., Macaluso, G., Amato, G. and Di Trapani, F. (2015), "Evaluation of infilled frames: an updated inplane-stiffness macro-model considering the effects of vertical loads", Bull. Earthq. Eng., 13(8), 2265-2281. https://doi.org/10.1007/s10518-014-9714-x.
  13. Cavaleri, L.N and Di Trapani, F. (2014), "Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling", Soil. Dyn. Earthq. Eng., 65, 224-242. https://doi.org/10.1016/j.soildyn.2014.06.016.
  14. Di Trapani, F., Shing, P.B. and Cavaleri, L. (2017), "Macroelement model for in-plane and out-of-plane responses of masonry infills in frame structures", J. Struct. Eng., 144(2), 04017198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001926.
  15. Eurocode 6 (2013), Design of Masonry Structures, Part 1-1: General Rules for Buildings. Rules for Reinforced and Unreinforced Masonry, European Committee for Standardization, Brussels, Belgium.
  16. FEMA-273 (1997), Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
  17. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2016), "Experimental evaluation of out-of plane capacity of masonry infill walls", Eng. Struct., 111, 48-63. https://doi.org/10.1016/j.engstruct.2015.12.013.
  18. Gaetani d'Aragona, M., Polese, M. and Prota, A. (2021), "Effect of masonry infill constitutive law on the global response of infilled RC buildings", Build., 11(2), 57. https://doi.org/10.3390/buildings11020057.
  19. Holmes, M. (1961), "Steel frames with brickwork and concrete infilling", Inst. Civil Eng., 19(4), 473-478. https://doi.org/10.1680/iicep.1961.11305.
  20. Jiang, R., Jiang, L., Hu, Y., Ye, J. and Zhou, L. (2020), "A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames", Struct. Eng. Mech., 74(6), 821-832. https://doi.org/10.12989/sem.2020.74.6.821.
  21. Kareem, K.M. and Panto, B. (2019), "Simplified macro modelling strategies for the seismic assessment of non-ductile infilled frames: a critical appraisal", J. Build. Eng., 22, 397-414. https://doi.org/10.1016/j.jobe.2018.12.010.
  22. Leuchars, J.M. (1973), "Masonry infill panels", M.E. Report; University of Canterbury, Christchurch, New Zealand.
  23. Mebarek, K., Bourahla, N. and Remki, M. (2021), "Performance evaluation of masonry Infilled RC frame structures under lateral loads", Gradevinar, 73(3), 219-234. https://doi.org/10.14256/JCE.2647.2019.
  24. Mehrabi, A (1994), "Behavior of masonry-infilled reinforced concrete frames subjected to lateral loading", Ph.D. Dissertation, University of Colorado Boulder, Boulder CO, USA.
  25. Panto, B., Calio, I. and Lourenco, P.B. (2017), "Seismic safety evaluation of reinforced concrete masonry infilled frames using macro modelling approach", Bull. Earthq. Eng., 15(9), 3871-3895. https://doi.org/10.1007/s10518-017-0120-z.
  26. Polese, M., Di Ludovico, M., Gaetani d'Aragona, M., Prota, A. and Manfredi, G. (2020), "Regional vulnerability and risk assessment accounting for local building typologies", Int. J. Disaster Risk Reduct., 43, 101400. https://doi.org/10.1016/j.ijdrr.2019.101400.
  27. Polyakov, S.V. (1960), "On the interaction between masonry filler walls and enclosing frame when loading in the plane of the wall", Trans. Earthq. Eng., 2(3), 36-42.
  28. Razzaghi, M.S. and Javidnia, M. (2015), "Evaluation of the effect of infill walls on seismic performance of RC dual frames", Int. J. Adv. Struct. Eng., 7(1), 49-54. https://doi.org/10.1007/s40091-015-0081-x.
  29. SAP2000 (2018), Integrated Finite Elements Analysis and Design of Structures, Computers and Structures Inc., Berkeley, CA, USA.
  30. SeismoStruct (2020), A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures, SeismoSoft, Pavia, Italy. https://seismosoft.com
  31. Senthil, K. and Satyanarayanan, K.S. (2016), "Influence of interface on the behavior of infilled frame subjected to lateral load using linear analysis", Coupled Syst. Mech., 5(2), 127-144. https://doi.org/10.12989/csm.2016.5.2.127.
  32. Smith, B.S. (1966), "Behavior of square infilled frames", J. Struct. Div., 92(1), 381-404. https://doi.org/10.1061/jsdeag.0001387.
  33. Tabeshpour, M.R. and Arasteh, A.M. (2019), "A new method for infill equivalent strut width", Struct. Eng. Mech., 69(3), 257-268. https://doi.org/10.12989/sem.2019.69.3.257.
  34. Turnsek, V. and and Sheppard, P. (1980), "The shear and flexural resistance of masonry walls", Proceedings of the International Research Conference on Earthquake Engineering, Skopje, Yugoslavia, June.
  35. Turnsek, V. and Cacovic, F. (1971), "Some experimental results on the strength of brick masonry walls", Proceedings of the 2nd International Brick Masonry Conference, Stoke-on-Trent, UK.