DOI QR코드

DOI QR Code

Application of GMDH model for predicting the fundamental period of regular RC infilled frames

  • Tran, Viet-Linh (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2020.10.07
  • Accepted : 2021.11.24
  • Published : 2022.01.10

Abstract

The fundamental period (FP) is one of the most critical parameters for the seismic design of structures. In the reinforced concrete (RC) infilled frame, the infill walls significantly affect the FP because they change the stiffness and mass of the structure. Although several formulas have been proposed for estimating the FP of the RC infilled frame, they are often associated with high bias and variance. In this study, an efficient soft computing model, namely the group method of data handling (GMDH), is proposed to predict the FP of regular RC infilled frames. For this purpose, 4026 data sets are obtained from the open literature, and the quality of the database is examined and evaluated in detail. Based on the cleaning database, several GMDH models are constructed and the best prediction model, which considers the height of the building, the span length, the opening percentage, and the infill wall stiffness as the input variables for predicting the FP of regular RC infilled frames, is chosen. The performance of the proposed GMDH model is further underscored through comparison of its FP predictions with those of existing design codes and empirical models. The accuracy of the proposed GMDH model is proven to be superior to others. Finally, explicit formulas and a graphical user-friendly interface (GUI) tool are developed to apply the GMDH model for practical use. They can provide a rapid prediction and design for the FP of regular RC infilled frames.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2019R1A4A1021702 and No. 2021R1A2B5B01002577).

References

  1. Al-Balhawi, A and Zhang, B. (2017), "Investigations of elastic vibration periods of reinforced concrete moment-resisting frame systems with various infill walls", Eng. Struct., 151(1), 73-187. https://doi.org/10.1016/j.engstruct.2017.08.016.
  2. Amanat, K.M. and Hoque, E. (2006), "A rationale for determining the natural period of RC building frames having infill", Eng. Struct., 28, 495-502. https://doi.org/10.1016/j.engstruct.2005.09.004
  3. Assaleh, K., AlHamaydeh, M. and Choudhary, I. (2015), "Modeling nonlinear behavior of Buckling-Restrained Braces via different artificial intelligence methods", Appl. Soft Comput. J., 37, 923-938. https://doi.org/10.1016/j.asoc.2015.09.014.
  4. Asteris, P.G. (2003), "Lateral stiffness of brick masonry infilled plane frames", J. Struct. Eng., 129, 1071-1079. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1071).
  5. Asteris, P.G. (2008), "Finite element micro-modeling of infilled frames", Electron J. Struct. Eng., 8, 1-11. https://doi.org/10.56748/ejse.894
  6. Asteris, P.G. (2016), "The FP4026 research database on the fundamental period of RC infilled frame structures", Data Br., 9, 704-709. https://doi.org/10.1016/j.dib.2016.10.002.
  7. Asteris, P.G., Antoniou, S.T., Sophianopoulos, D.S. and Chrysostomou, C.Z. (2011), "Mathematical macromodeling of infilled frames: State of the art", J. Struct. Eng., 137, 1508-1517. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000384.
  8. Asteris, P.G., Repapis, C.C., Cavaleri, L., Sarhosis, V. and Athanasopoulou, A. (2015), "On the fundamental period of infilled RC frame buildings", Struct. Eng. Mech., 54(6), 1175-1200. https://doi.org/10.12989/sem.2015.54.6.1175.
  9. Asteris, P.G., Repapis, C.C., Repapi, E.V. and Cavaleri, L. (2017), "Fundamental period of infilled reinforced concrete frame structures", Struct. Infrastruct. Eng., 13, 929-941. https://doi.org/10.1080/15732479.2016.1227341.
  10. Asteris, P.G., Repapis, C.C., Tsaris, A.K., Di Trapani, F. and Cavaleri, L. (2015), "Parameters affecting the fundamental period of infilled RC frame structures", Earthq. Struct., 9(5), 999-1028. https://doi.org/10.12989/eas.2015.9.5.999.
  11. ATC-3 (1984), Applied Technology Council, Tentative Provisions for the Development of Seismic Regulations for Buildings, National Science Foundation and National Bureau of Standards, Federal Emergency Management Agency.
  12. Cavaleri, L., Fossetti, M. and Papia, M. (2005), "Infilled frames: Developments in the evaluation of cyclic behaviour under lateral loads", Struct. Eng. Mech., 21, 469-494. https://doi.org/10.12989/sem.2005.21.4.469.
  13. Chelladurai, S.J.S., Murugan, K., Ray, A.P., Upadhyaya, M., Narasimharaj, V. and Gnanasekaran, S. (2021), "Optimization of process parameters using response surface methodology: A review", Mater. Today: Proc., 37, 1301-1304. https://doi.org/10.1016/j.matpr.2020.06.466.
  14. Chopra, A.K. and Goel, R.K. (2000), "Building period formulas for estimating seismic displacements", Earthq. Spectra, 16, 533-536. https://doi.org/10.1193/1.1586125
  15. Crisafulli, F.J. and Carr, A.J. (2007), "Proposed macro-model for the analysis of infilled frame structures", Bull. New Zeal. Soc. Earthq. Eng., 40, 69-77. https://doi.org/10.5459/bnzsee.40.2.69-77.
  16. Crowley, H. and Pinho, R. (2006), "Simplified equations for estimating the period of vibration of existing buildings", First Eur. Conf. Earthq. Eng. Seismol., 3-8. https://doi.org/1122.
  17. Dolek, M. and Fajfar, P. (2002), "Mathematical modelling of an infilled RC frame structure based on the results of pseudo-dynamic tests", Earthq. Eng. Struct. Dyn., 31, 1215-1230. https://doi.org/10.1002/eqe.154
  18. EC2 (2011), Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. Regul Eur Union Per 1.
  19. Falcone, R., Lima, C. and Martinelli, E. (2020), "Soft computing techniques in structural and earthquake engineering: a literature review", Eng. Struct., 207, 110269. https://doi.org/10.1016/j.engstruct.2020.110269.
  20. Gesualdi, G., Viggiani, L.R.S. and Cardone, D. (2020), "Seismic performance of RC frame buildings accounting for the out-of-plane behavior of masonry infills", Bull. Earthq. Eng., 18(11), 5343-5381. https://doi.org/10.1007/s10518-020-00904-1.
  21. Goel, R.K. and Chopra, A.K. (1997), "Period formulas for moment-resisting frame buildings", J. Struct. Eng., 123(11), 1454-1461. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1454).
  22. Goel, R.K. and Chopra, A.K. (1998), "Period formulas for concrete shear wall buildings", J. Struct. Eng., 124(4), 426-433. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(426).
  23. Guler, K., Yuksel, E. and Kocak, A. (2008), "Estimation of the fundamental vibration period of existing RC buildings in Turkey utilizing ambient vibration records", J. Earthq. Eng., 12(S2), 140-150. https://doi.org/10.1080/13632460802013909.
  24. Gullu, H. (2013), "On the prediction of shear wave velocity at local site of strong ground motion stations: An application using artificial intelligence", Bull. Earthq. Eng., 11(4), 969-997. https://doi.org/10.1007/s10518-013-9425-8.
  25. Gullu, H. and Fedakar, H.I. (2017), "Response surface methodology for optimization of stabilizer dosage rates of marginal sand stabilized with Sludge Ash and fiber based on UCS performances", KSCE J. Civil Eng., 21(5), 1717-1727. https://doi.org/10.1007/s12205-016-0724-x.
  26. Gullu, H. and Jaf, H.S. (2016), "Full 3D nonlinear time history analysis of dynamic soil-structure interaction for a historical masonry arch bridge", Environ. Earth Sci., 75(21), 1-17. https://doi.org/10.1007/s12665-016-6230-0.
  27. Gullu, H. and Karabekmez, M. (2017), "Effect of near-fault and far-fault earthquakes on a historical masonry mosque through 3D dynamic soil-structure interaction", Eng. Struct., 152, 465-492. https://doi.org/10.1016/j.engstruct.2017.09.031.
  28. Gullu, H. and Ozel, F. (2020), "Microtremor measurements and 3D dynamic soil-structure interaction analysis for a historical masonry arch bridge under the effects of near- and far-fault earthquakes", Environ. Earth Sci., 79(13), 1-29. https://doi.org/10.1007/s12665-020-09086-0.
  29. Gullu, H. and Pala, M. (2014), "On the resonance effect by dynamic soil-structure interaction: A revelation study", Nat Hazards, 72(2), 827-847. https://doi.org/10.1007/s11069-014-1039-1.
  30. Gumpertz, S. (1999), "Pseudodynamic testing of masonry infilled reinforced concrete frame", J. Struct. Eng., 125(6), 578-589. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:6(578).
  31. Guo, K. and Yang, G. (2020), "Load - slip curves of shear connection in composite structures : prediction based on ANNs", Steel Compos. Struct., 36(5), 493-506. https://doi.org/10.12989/scs.2020.36.5.493.
  32. Harirchian, E., Hosseini, S.E.A., Jadhav, K., Kumari, V., Rasulzade, S., Isik, E. and Lahmer, T. (2021), "A review on application of soft computing techniques for the rapid visual safety evaluation and damage classification of existing buildings", J. Build. Eng., 102536. https://doi.org/10.1016/j.jobe.2021.102536.
  33. Hong, L.L. and Hwang, W.L. (2000), "Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan", Earthq. Eng. Struct. Dyn., 29(3), 327-337. https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<327::AID-EQE907>3.0.CO;2-0.
  34. Kaltakci, M.Y. and Yavuz, G. (2012), "An experimental study on strengthening of vulnerable RC frames with RC wing walls", Struct. Eng. Mech., 41(6), 691-710. https://doi.org/10.12989/sem.2012.41.6.691.
  35. Karina, C.N.N., Chun, P.J. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.
  36. Kose, M.M. (2009), "Parameters affecting the fundamental period of RC buildings with infill walls", Eng. Struct., 31(1), 93-102. https://doi.org/10.1016/j.engstruct.2008.07.017.
  37. Kurtoglu, A.E. (2018), "Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines", Steel Compos. Struct., 29(3), 309-318. https://doi.org/10.12989/scs.2018.29.3.309.
  38. Lee, S. and Lee, C. (2014), "Prediction of shear strength of FRPreinforced concrete flexural members without stirrups using artificial neural networks", Eng. Struct., 61(2014), 99-112. https://doi.org/10.1016/j.engstruct.2014.01.001.
  39. Mehrabi, A.B., Benson Shing, P., Schuller, M.P. and Noland, J.L. (1996), "Experimental evaluation of masonry-infilled RC frames", J. Struct. Eng., 122(3), 228-237. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(228).
  40. Milovancevic, M., Nikolic, V., Petkovic, D., Vracar, L., Veg, E., Tomic, N. and Jovic, S. (2018), "Vibration analyzing in horizontal pumping aggregate by soft computing", Measurement, 125, 454-462. https://doi.org/10.1016/j.measurement.2018.04.100.
  41. Misir, I.S., Ozcelik, O., Girgin, S.C. and Kahraman, S. (2012), "Experimental work on seismic behavior of various types of masonry infilled RC frames", Struct. Eng. Mech., 44(6), 763-774. https://doi.org/10.12989/sem.2012.44.6.763.
  42. Mohammadi, M., Hemmati-sarapardeh, A. and Schaffie, M. (2021), "Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery", J. Pet. Sci. Eng., 205, 108836. https://doi.org/10.1016/j.petrol.2021.108836.
  43. Morfidis, K. and Kostinakis, K. (2017), "The role of masonry infills on the damage response of R/C buildings subjected to seismic sequences", Eng. Struct., 131, 459-476. https://doi.org/10.1016/j.engstruct.2016.10.039.
  44. Naderpour, H., Eidgahee, D.R., Fakharian, P., Rafiean, A.H. and Kalantari, S.M. (2020), "A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling", Eng. Sci. Technol. Int. J., 23(2), 382-391. https://doi.org/10.1016/j.jestch.2019.05.013.
  45. Naeini, S.A., Moayed, R.Z., Kordnaeij, A. andMola-Abasi, H. (2018), "Elasticity modulus of clayey deposits estimation using group method of data handling type neural network", Meas. J. Int. Meas. Confed., 121, 335-343. https://doi.org/10.1016/j.measurement.2018.02.068.
  46. Ozturkoglu, O., Ucar, T. and Yesilce, Y. (2017), "Effect of masonry infill walls with openings on nonlinear response of steel frames", Earthq. Struct., 12(3), 33-347. https://doi.org/10.28991/cej-2021-03091653
  47. Pinto, A.V., Verzeletti, G., Molina, J., Varum, H., Pinho, R. and Coelho, E. (2002), Pseudo-Dynamic Tests on Non-Seismic Resisting RC Frames (Bare and Selective Retrofit), JRC23144, EUR 20244 EN. https://publications.jrc.ec.europa.eu/repository/handle/JRC23144.
  48. Radaideh, M.I. and Kozlowski, T. (2020), "Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling", Nucl. Eng. Technol., 52(2), 287-295. https://doi.org/10.1016/j.net.2019.07.023
  49. Riad, M., Hadjadj, A. and Boukredera, F.S. (2021), "New model for standpipe pressure prediction while drilling using Group Method of Data Handling", Petroleum, https://doi.org/10.1016/j.petlm.2021.04.003.
  50. SeismoSoft (2006), A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. Disponivel online.
  51. Serban, A. (2017), "Failure estimation of the composite laminates using machine learning techniques", Steel Compos. Struct., 25(6), 663-670. https://doi.org/10.12989/scs.2017.25.6.663.
  52. Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A. and Poi-Ngian, S. (2019), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  53. Stefenon, S.F., Ribeiro, M.H.D.M., Nied, A., Mariani, V.C., dos Santos Coelho, L., da Rocha, D.F.M. and de Barros Ruano, A. E. (2020), "Wavelet group method of data handling for fault prediction in electrical power insulators", Int. J. Electric. Power Energy Syst., 123, 106269. https://doi.org/10.1016/j.ijepes.2020.106269.
  54. Teguh, M. (2017), "Experimental evaluation of masonry infill walls of RC frame buildings subjected to cyclic loads", Procedia Eng., 171, 191-200. https://doi.org/10.1016/j.proeng.2017.01.326.
  55. The European Union Per Regulation (2011), Eurocode 8: Design of Structures for Earthquake rRsistance -Part 1 : General Rules, Seismic Actions and Rules for Buildings. Eur Comm Stand 1.
  56. Tran ,V.L., Thai, D.K. and Kim, S.E. (2019a), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.
  57. Tran, V.L., Thai, D.K. and Kim, S.E. (2019b), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33(2), 181-194. https://doi.org/10.12989/scs.2019.33.2.181.
  58. Tukey, J.W. (1977), Exploratory Data Analysis, Addison Wesley.