Browse > Article
http://dx.doi.org/10.12989/scs.2022.42.1.123

Application of GMDH model for predicting the fundamental period of regular RC infilled frames  

Tran, Viet-Linh (Department of Civil and Environmental Engineering, Sejong University)
Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
Publication Information
Steel and Composite Structures / v.42, no.1, 2022 , pp. 123-137 More about this Journal
Abstract
The fundamental period (FP) is one of the most critical parameters for the seismic design of structures. In the reinforced concrete (RC) infilled frame, the infill walls significantly affect the FP because they change the stiffness and mass of the structure. Although several formulas have been proposed for estimating the FP of the RC infilled frame, they are often associated with high bias and variance. In this study, an efficient soft computing model, namely the group method of data handling (GMDH), is proposed to predict the FP of regular RC infilled frames. For this purpose, 4026 data sets are obtained from the open literature, and the quality of the database is examined and evaluated in detail. Based on the cleaning database, several GMDH models are constructed and the best prediction model, which considers the height of the building, the span length, the opening percentage, and the infill wall stiffness as the input variables for predicting the FP of regular RC infilled frames, is chosen. The performance of the proposed GMDH model is further underscored through comparison of its FP predictions with those of existing design codes and empirical models. The accuracy of the proposed GMDH model is proven to be superior to others. Finally, explicit formulas and a graphical user-friendly interface (GUI) tool are developed to apply the GMDH model for practical use. They can provide a rapid prediction and design for the FP of regular RC infilled frames.
Keywords
fundamental period; group method of data handling; reinforced concrete infilled frame structure; soft computing;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 ATC-3 (1984), Applied Technology Council, Tentative Provisions for the Development of Seismic Regulations for Buildings, National Science Foundation and National Bureau of Standards, Federal Emergency Management Agency.
2 Riad, M., Hadjadj, A. and Boukredera, F.S. (2021), "New model for standpipe pressure prediction while drilling using Group Method of Data Handling", Petroleum, https://doi.org/10.1016/j.petlm.2021.04.003.   DOI
3 Serban, A. (2017), "Failure estimation of the composite laminates using machine learning techniques", Steel Compos. Struct., 25(6), 663-670. https://doi.org/10.12989/scs.2017.25.6.663.   DOI
4 Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A. and Poi-Ngian, S. (2019), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.   DOI
5 Milovancevic, M., Nikolic, V., Petkovic, D., Vracar, L., Veg, E., Tomic, N. and Jovic, S. (2018), "Vibration analyzing in horizontal pumping aggregate by soft computing", Measurement, 125, 454-462. https://doi.org/10.1016/j.measurement.2018.04.100.   DOI
6 Karina, C.N.N., Chun, P.J. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.   DOI
7 Lee, S. and Lee, C. (2014), "Prediction of shear strength of FRPreinforced concrete flexural members without stirrups using artificial neural networks", Eng. Struct., 61(2014), 99-112. https://doi.org/10.1016/j.engstruct.2014.01.001.   DOI
8 Tran ,V.L., Thai, D.K. and Kim, S.E. (2019a), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.   DOI
9 Teguh, M. (2017), "Experimental evaluation of masonry infill walls of RC frame buildings subjected to cyclic loads", Procedia Eng., 171, 191-200. https://doi.org/10.1016/j.proeng.2017.01.326.   DOI
10 The European Union Per Regulation (2011), Eurocode 8: Design of Structures for Earthquake rRsistance -Part 1 : General Rules, Seismic Actions and Rules for Buildings. Eur Comm Stand 1.
11 Tran, V.L., Thai, D.K. and Kim, S.E. (2019b), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33(2), 181-194. https://doi.org/10.12989/scs.2019.33.2.181.   DOI
12 Tukey, J.W. (1977), Exploratory Data Analysis, Addison Wesley.
13 Stefenon, S.F., Ribeiro, M.H.D.M., Nied, A., Mariani, V.C., dos Santos Coelho, L., da Rocha, D.F.M. and de Barros Ruano, A. E. (2020), "Wavelet group method of data handling for fault prediction in electrical power insulators", Int. J. Electric. Power Energy Syst., 123, 106269. https://doi.org/10.1016/j.ijepes.2020.106269.   DOI
14 Misir, I.S., Ozcelik, O., Girgin, S.C. and Kahraman, S. (2012), "Experimental work on seismic behavior of various types of masonry infilled RC frames", Struct. Eng. Mech., 44(6), 763-774. https://doi.org/10.12989/sem.2012.44.6.763.   DOI
15 Pinto, A.V., Verzeletti, G., Molina, J., Varum, H., Pinho, R. and Coelho, E. (2002), Pseudo-Dynamic Tests on Non-Seismic Resisting RC Frames (Bare and Selective Retrofit), JRC23144, EUR 20244 EN. https://publications.jrc.ec.europa.eu/repository/handle/JRC23144.
16 SeismoSoft (2006), A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. Disponivel online.
17 Chopra, A.K. and Goel, R.K. (2000), "Building period formulas for estimating seismic displacements", Earthq. Spectra, 16, 533-536.   DOI
18 Asteris, P.G., Antoniou, S.T., Sophianopoulos, D.S. and Chrysostomou, C.Z. (2011), "Mathematical macromodeling of infilled frames: State of the art", J. Struct. Eng., 137, 1508-1517. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000384.   DOI
19 Assaleh, K., AlHamaydeh, M. and Choudhary, I. (2015), "Modeling nonlinear behavior of Buckling-Restrained Braces via different artificial intelligence methods", Appl. Soft Comput. J., 37, 923-938. https://doi.org/10.1016/j.asoc.2015.09.014.   DOI
20 EC2 (2011), Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. Regul Eur Union Per 1.
21 Gesualdi, G., Viggiani, L.R.S. and Cardone, D. (2020), "Seismic performance of RC frame buildings accounting for the out-of-plane behavior of masonry infills", Bull. Earthq. Eng., 18(11), 5343-5381. https://doi.org/10.1007/s10518-020-00904-1.   DOI
22 Asteris, P.G. (2008), "Finite element micro-modeling of infilled frames", Electron J. Struct. Eng., 8, 1-11.   DOI
23 Al-Balhawi, A and Zhang, B. (2017), "Investigations of elastic vibration periods of reinforced concrete moment-resisting frame systems with various infill walls", Eng. Struct., 151(1), 73-187. https://doi.org/10.1016/j.engstruct.2017.08.016.   DOI
24 Amanat, K.M. and Hoque, E. (2006), "A rationale for determining the natural period of RC building frames having infill", Eng. Struct., 28, 495-502. https://doi.org/10.1016/j.engstruct.2005.09.004   DOI
25 Asteris, P.G. (2003), "Lateral stiffness of brick masonry infilled plane frames", J. Struct. Eng., 129, 1071-1079. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1071).   DOI
26 Asteris, P.G. (2016), "The FP4026 research database on the fundamental period of RC infilled frame structures", Data Br., 9, 704-709. https://doi.org/10.1016/j.dib.2016.10.002.   DOI
27 Asteris, P.G., Repapis, C.C., Cavaleri, L., Sarhosis, V. and Athanasopoulou, A. (2015), "On the fundamental period of infilled RC frame buildings", Struct. Eng. Mech., 54(6), 1175-1200. https://doi.org/10.12989/sem.2015.54.6.1175.   DOI
28 Asteris, P.G., Repapis, C.C., Repapi, E.V. and Cavaleri, L. (2017), "Fundamental period of infilled reinforced concrete frame structures", Struct. Infrastruct. Eng., 13, 929-941. https://doi.org/10.1080/15732479.2016.1227341.   DOI
29 Asteris, P.G., Repapis, C.C., Tsaris, A.K., Di Trapani, F. and Cavaleri, L. (2015), "Parameters affecting the fundamental period of infilled RC frame structures", Earthq. Struct., 9(5), 999-1028. https://doi.org/10.12989/eas.2015.9.5.999.   DOI
30 Cavaleri, L., Fossetti, M. and Papia, M. (2005), "Infilled frames: Developments in the evaluation of cyclic behaviour under lateral loads", Struct. Eng. Mech., 21, 469-494. https://doi.org/10.12989/sem.2005.21.4.469.   DOI
31 Guo, K. and Yang, G. (2020), "Load - slip curves of shear connection in composite structures : prediction based on ANNs", Steel Compos. Struct., 36(5), 493-506. https://doi.org/10.12989/scs.2020.36.5.493.   DOI
32 Mehrabi, A.B., Benson Shing, P., Schuller, M.P. and Noland, J.L. (1996), "Experimental evaluation of masonry-infilled RC frames", J. Struct. Eng., 122(3), 228-237. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(228).   DOI
33 Naeini, S.A., Moayed, R.Z., Kordnaeij, A. andMola-Abasi, H. (2018), "Elasticity modulus of clayey deposits estimation using group method of data handling type neural network", Meas. J. Int. Meas. Confed., 121, 335-343. https://doi.org/10.1016/j.measurement.2018.02.068.   DOI
34 Crisafulli, F.J. and Carr, A.J. (2007), "Proposed macro-model for the analysis of infilled frame structures", Bull. New Zeal. Soc. Earthq. Eng., 40, 69-77. https://doi.org/10.5459/bnzsee.40.2.69-77.   DOI
35 Crowley, H. and Pinho, R. (2006), "Simplified equations for estimating the period of vibration of existing buildings", First Eur. Conf. Earthq. Eng. Seismol., 3-8. https://doi.org/1122.
36 Goel, R.K. and Chopra, A.K. (1998), "Period formulas for concrete shear wall buildings", J. Struct. Eng., 124(4), 426-433. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(426).   DOI
37 Dolek, M. and Fajfar, P. (2002), "Mathematical modelling of an infilled RC frame structure based on the results of pseudo-dynamic tests", Earthq. Eng. Struct. Dyn., 31, 1215-1230.   DOI
38 Falcone, R., Lima, C. and Martinelli, E. (2020), "Soft computing techniques in structural and earthquake engineering: a literature review", Eng. Struct., 207, 110269. https://doi.org/10.1016/j.engstruct.2020.110269.   DOI
39 Goel, R.K. and Chopra, A.K. (1997), "Period formulas for moment-resisting frame buildings", J. Struct. Eng., 123(11), 1454-1461. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1454).   DOI
40 Gullu, H. (2013), "On the prediction of shear wave velocity at local site of strong ground motion stations: An application using artificial intelligence", Bull. Earthq. Eng., 11(4), 969-997. https://doi.org/10.1007/s10518-013-9425-8.   DOI
41 Gullu, H. and Fedakar, H.I. (2017), "Response surface methodology for optimization of stabilizer dosage rates of marginal sand stabilized with Sludge Ash and fiber based on UCS performances", KSCE J. Civil Eng., 21(5), 1717-1727. https://doi.org/10.1007/s12205-016-0724-x.   DOI
42 Chelladurai, S.J.S., Murugan, K., Ray, A.P., Upadhyaya, M., Narasimharaj, V. and Gnanasekaran, S. (2021), "Optimization of process parameters using response surface methodology: A review", Mater. Today: Proc., 37, 1301-1304. https://doi.org/10.1016/j.matpr.2020.06.466.   DOI
43 Gullu, H. and Pala, M. (2014), "On the resonance effect by dynamic soil-structure interaction: A revelation study", Nat Hazards, 72(2), 827-847. https://doi.org/10.1007/s11069-014-1039-1.   DOI
44 Guler, K., Yuksel, E. and Kocak, A. (2008), "Estimation of the fundamental vibration period of existing RC buildings in Turkey utilizing ambient vibration records", J. Earthq. Eng., 12(S2), 140-150. https://doi.org/10.1080/13632460802013909.   DOI
45 Harirchian, E., Hosseini, S.E.A., Jadhav, K., Kumari, V., Rasulzade, S., Isik, E. and Lahmer, T. (2021), "A review on application of soft computing techniques for the rapid visual safety evaluation and damage classification of existing buildings", J. Build. Eng., 102536. https://doi.org/10.1016/j.jobe.2021.102536.   DOI
46 Gullu, H. and Jaf, H.S. (2016), "Full 3D nonlinear time history analysis of dynamic soil-structure interaction for a historical masonry arch bridge", Environ. Earth Sci., 75(21), 1-17. https://doi.org/10.1007/s12665-016-6230-0.   DOI
47 Gullu, H. and Karabekmez, M. (2017), "Effect of near-fault and far-fault earthquakes on a historical masonry mosque through 3D dynamic soil-structure interaction", Eng. Struct., 152, 465-492. https://doi.org/10.1016/j.engstruct.2017.09.031.   DOI
48 Gullu, H. and Ozel, F. (2020), "Microtremor measurements and 3D dynamic soil-structure interaction analysis for a historical masonry arch bridge under the effects of near- and far-fault earthquakes", Environ. Earth Sci., 79(13), 1-29. https://doi.org/10.1007/s12665-020-09086-0.   DOI
49 Gumpertz, S. (1999), "Pseudodynamic testing of masonry infilled reinforced concrete frame", J. Struct. Eng., 125(6), 578-589. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:6(578).   DOI
50 Hong, L.L. and Hwang, W.L. (2000), "Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan", Earthq. Eng. Struct. Dyn., 29(3), 327-337. https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<327::AID-EQE907>3.0.CO;2-0.   DOI
51 Naderpour, H., Eidgahee, D.R., Fakharian, P., Rafiean, A.H. and Kalantari, S.M. (2020), "A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling", Eng. Sci. Technol. Int. J., 23(2), 382-391. https://doi.org/10.1016/j.jestch.2019.05.013.   DOI
52 Kaltakci, M.Y. and Yavuz, G. (2012), "An experimental study on strengthening of vulnerable RC frames with RC wing walls", Struct. Eng. Mech., 41(6), 691-710. https://doi.org/10.12989/sem.2012.41.6.691.   DOI
53 Kose, M.M. (2009), "Parameters affecting the fundamental period of RC buildings with infill walls", Eng. Struct., 31(1), 93-102. https://doi.org/10.1016/j.engstruct.2008.07.017.   DOI
54 Kurtoglu, A.E. (2018), "Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines", Steel Compos. Struct., 29(3), 309-318. https://doi.org/10.12989/scs.2018.29.3.309.   DOI
55 Mohammadi, M., Hemmati-sarapardeh, A. and Schaffie, M. (2021), "Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery", J. Pet. Sci. Eng., 205, 108836. https://doi.org/10.1016/j.petrol.2021.108836.   DOI
56 Morfidis, K. and Kostinakis, K. (2017), "The role of masonry infills on the damage response of R/C buildings subjected to seismic sequences", Eng. Struct., 131, 459-476. https://doi.org/10.1016/j.engstruct.2016.10.039.   DOI
57 Ozturkoglu, O., Ucar, T. and Yesilce, Y. (2017), "Effect of masonry infill walls with openings on nonlinear response of steel frames", Earthq. Struct., 12(3), 33-347. https://doi.org/10.28991/cej-2021-03091653   DOI
58 Radaideh, M.I. and Kozlowski, T. (2020), "Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling", Nucl. Eng. Technol., 52(2), 287-295. https://doi.org/10.1016/j.net.2019.07.023   DOI