• 제목/요약/키워드: regulatory T-cells

검색결과 343건 처리시간 0.022초

Regulatory T Cells in B Cell Follicles

  • Chang, Jae-Hoon;Chung, Yeonseok
    • IMMUNE NETWORK
    • /
    • 제14권5호
    • /
    • pp.227-236
    • /
    • 2014
  • Understanding germinal center reactions is crucial not only for the design of effective vaccines against infectious agents and malignant cells but also for the development of therapeutic intervention for the treatment of antibody-mediated immune disorders. Recent advances in this field have revealed specialized subsets of T cells necessary for the control of B cell responses in the follicle. These cells include follicular regulatory T cells and Qa-1-restricted cluster of differentiation $(CD)8^+$ regulatory T cells. In this review, we discuss the current knowledge related to the role of regulatory T cells in the B cell follicle.

Regulatory T Cells and Infectious Disease

  • Rouse, Barry T.;Sehrawat, Sharvan
    • IMMUNE NETWORK
    • /
    • 제7권4호
    • /
    • pp.167-172
    • /
    • 2007
  • Various cell types that express regulatory function may influence the pathogenesis of most and perhaps all infections. Some regulatory cells are present at the time of infection whereas others are induced or activated in response to infection. The actual mechanisms by which different types of infections signal regulatory cell responses remain poorly understood. However a most likely mechanism is the creation of a microenvironment that permits the conversion of conventional T cells into cells with the same antigen specificity that have regulatory function. Some possible means by which this can occur are discussed. The relationship between regulatory cells and infections is complex especially with chronic situations. The outcome can either be of benefit to the host or damage the disease control process or in rare instances appears to be a component of a finely balanced relationship between the host and the infecting agent. Manipulating the regulatory cell responses to achieve a favorable outcome of infection remains an unfulfilled objective of therapeutic immunology.

Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

  • Manfred B. Lutz
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.13-25
    • /
    • 2016
  • Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3- regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.

OVA로 유도된 천식 모델 생쥐에서 목천료자(木天蓼子)가 조절 T 세포, NK T 세포 및 gammadelta T 세포수 변화에 미치는 영향 (Effects of APF and CsA on the number of regulatory T cells, NK T cells and gammadelta T cells in OVA-induced murine model of asthma)

  • 김승형;노성수;이장천;서영배;이영철
    • 대한본초학회지
    • /
    • 제21권1호
    • /
    • pp.51-56
    • /
    • 2006
  • Objectives : To clarify the effects of Actinidia polygama and CsA on OVA-induced asthma model, we examined the influence of Actinidia polygama fructus extract (APF) and CsA on the number of regulatory T cells, NKT cells and ${\gamma}{\delta}$ T cells in murine model of asthma. Methods : All mice were immunized on two different days (21 days and 7 days before inhalational exposure) by i.p. injections of OVA in PBS. Seven days after the second sensitization, mice were exposed to aerosolized ovalbumin for 30 min/day on 3 days/week for 12 weeks and APF (400, 40 mg/kg) were orally administered 3 times a week for 8 weeks. Results : The suppressive effects of APF on asthma model were demonstrated by the increase the number of regulatory T cells, ${\gamma}{\delta}$ T cells and by reducing the number of NK T cells. Conclusion : These results indicate that APF has a deep inhibitory effect on airway inflammation and hyperresponsiveness in murine model of asthma by increase the number of regulatory T cells, and ${\gamma}{\delta}$ T cells and by reducing the number of NK T cells.

  • PDF

The Role of Regulatory T Cells in Cancer

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제9권6호
    • /
    • pp.209-235
    • /
    • 2009
  • There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA.

조절 T세포에 미치는 치자(梔子)의 효과 (Research on the Effect of Gardeniae Fructus on Regulatory T Cell Stimulation)

  • 서산;정희재;정승기
    • 대한한방내과학회지
    • /
    • 제31권2호
    • /
    • pp.189-200
    • /
    • 2010
  • Objectives : Regulatory T cells can reduce inflammation and allergic reactions through their inhibitory functions. Gardeniae Fructus(GF) is a Heat-clearing herb used in traditional Korean medicine, and a wide range of studies on its antiinflammatory effects are being carried out. The authors investigated the effect that Gardeniae Fructus has on regulatory T cells. Methods : The authors screened 14 herbs for their effects on regulatory T cells. 100mg of each herb were separately dissolved in 1ml of sterile saline and the supernatant was harvested after 10 minutes of centrifuge at 15,000 rpm. The supernatant was filtered through a 0.2 ${\mu}m$ syringe filter, and the resulting stock was refrigerated at $4^{\circ}C$. The stock was diluted before testing and used at a final concentration of $0.01{\mu}g/ml$. CD4+CD25+ T cells from healthy BALB/c spleens were used as natural regulatory T cells (nTreg), and CD4+CD25- T cells were used as reactive T cells. CD4+CD25+ and CD4+CD25- T cells were activated with anti-CD3e ($10{\mu}g/m{\ell}$)/anti-CD28 ($1{\mu}g/m{\ell}$) and cultured. IL-10 from supernatant of the culture medium was measured by IL-10 cytokine ELISA. The percentages, cell numbers, phenotype and function of CD4+CD25+ Treg cells were determined by flow cytometry. Results : Gardeniae Fructus was shown to be the most potent herb among the 14 herbs tested for suppressing CD4+CD25- reactive T cell proliferation by stimulating CD4+CD25+ natural regulatory T cells. Gardeniae Fructus induces IL-10 secretion increase by stimulating CD4+CD25+ natural regulatory T cells, and indirectly suppresses CD4+CD25- reactive T cell proliferation through increasing CD25 (IL-2 receptor $\alpha$) expression and thus promoting bonding with IL-2. Gardeniae Fructus did not directly affect CD4+CD25- reactive T cell proliferation. Conclusions : Gardeniae Fructus suppressed reactive T cell proliferation through inducing increases in IL-10 secretion and CD25 (IL-2 receptor $\alpha$) expression.

PLZF+ Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells

  • Kang, Byung Hyun;Park, Hyo Jin;Park, Hi Jung;Lee, Jae-Il;Park, Seong Hoe;Jung, Kyeong Cheon
    • Molecules and Cells
    • /
    • 제39권6호
    • /
    • pp.468-476
    • /
    • 2016
  • PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether $PLZF^+$ innate T cells also affect the development and function of $Foxp3^+$ regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant $PLZF^+$ CD4 T cells and invariant natural killer T cells, respectively, revealed that $Foxp3^+$ T cells in these mice exhibited a $CD103^+$ activated/memorylike phenotype. The frequency of $CD103^+$ regulatory T cells was considerably decreased in $PLZF^+$ cell-deficient $CIITA^{Tg}Plzf^{lu/lu}$ and $BALB/c.CD1d^{-/-}$ mice as well as in an IL-4-deficient background, such as in $CIITA^{Tg}IL-4^{-/-}$ and $BALB/c.IL-4^{-/-}$ mice, indicating that the acquisition of an activated/ memory-like phenotype was dependent on $PLZF^+$ innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-${\beta}$ enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/ memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of $CIITA^{Tg}PIV^{-/-}$ mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that $PLZF^+$ innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production.

Regulatory T Cell Therapy for Autoimmune Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제8권4호
    • /
    • pp.107-123
    • /
    • 2008
  • It has now been well documented in a variety of models that T regulatory T cells (Treg cells) play a pivotal role in the maintenance of self-tolerance, T cell homeostasis, tumor, allergy, autoimmunity, allograft transplantation and control of microbial infection. Recently, Treg cell are isolated and can be expanded in vitro and in vivo, and their role is the subject of intensive investigation, particularly on the possible Treg cell therapy for various immune-mediated diseases. A growing body of evidence has demonstrated that Treg cells can prevent or even cure a wide range of diseases, including tumor, allergic and autoimmune diseases, transplant rejection, graft-versus-host disease. Currently, a large body of data in the literature has been emerging and provided evidence that clear understanding of Treg cell work will present definite opportunities for successful Treg cell immunotherapy for the treatment of a broad spectrum of diseases. In this Review, I briefly discuss the biology of Treg cells, and summarize efforts to exploit Treg cell therapy for autoimmune diseases. This article also explores recent observations on pharmaceutical agents that abrogate or enhance the function of Treg cells for manipulation of Treg cells for therapeutic purpose.

Peripheral Generation of $CD4^+CD25^+Foxp3^+$ Regulatory T Cells

  • Kim, Byung-Seok;Park, Young-Jun;Kang, Chang-Yuil
    • IMMUNE NETWORK
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2007
  • [ $CD4^+CD25^+$ ] regulatory T cells (Tregs) expressing the lineage-specific marker Foxp3 represent an important regulatory T cell that is essential for maintaining peripheral tolerance. Although it was believed that Treg development is solely dependent on the thymus, accumulating evidence demonstrates that Tregs can also be induced in the periphery. Considering the various origins of peripherally developed $CD4^+CD25^+Foxp3^+$ regulatory T cells, it seems likely that multiple factors are involved in the peripheral generation of Tregs.

Presence of Foxp3-expressing CD19(+)CD5(+) B Cells in Human Peripheral Blood Mononuclear Cells: Human CD19(+)CD5(+)Foxp3(+) Regulatory B Cell (Breg)

  • Noh, Joon-Yong;Choi, Wahn-Soo;Noh, Geun-Woong;Lee, Jae-Ho
    • IMMUNE NETWORK
    • /
    • 제10권6호
    • /
    • pp.247-249
    • /
    • 2010
  • Foxp3 is a transcript factor for regulatory T cell development. Interestingly, Foxp3-expressing cells were identified in B cells, especially in CD19(+)CD5(+) B cells, while those were not examined in CD19(+)CD5(-) B cells. Foxp3-expressing CD5(+) B cells in this study were identified in human PBMCs and were found to consist of $8.5{\pm}3.5%$ of CD19(+)CD5(+) B cells. CD19(+)CD5(+)Foxp3(+) B cells showed spontaneous apoptosis. Rare CD19(+)CD5(+) Foxp3(+) regulatory B cell (Breg) population was unveiled in human peripheral blood mononuclear cells and suggested as possible regulatory B cells (Breg) as regulatory T cells (Treg). The immunologic and the clinical relevant of Breg needs to be further investigated.