Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0004

PLZF+ Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells  

Kang, Byung Hyun (Postgraduate Course of Translational Medicine, Seoul National University College of Medicine)
Park, Hyo Jin (Department of Pathology, Seoul National University College of Medicine)
Park, Hi Jung (Postgraduate Course of Translational Medicine, Seoul National University College of Medicine)
Lee, Jae-Il (Postgraduate Course of Translational Medicine, Seoul National University College of Medicine)
Park, Seong Hoe (Postgraduate Course of Translational Medicine, Seoul National University College of Medicine)
Jung, Kyeong Cheon (Postgraduate Course of Translational Medicine, Seoul National University College of Medicine)
Abstract
PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether $PLZF^+$ innate T cells also affect the development and function of $Foxp3^+$ regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant $PLZF^+$ CD4 T cells and invariant natural killer T cells, respectively, revealed that $Foxp3^+$ T cells in these mice exhibited a $CD103^+$ activated/memorylike phenotype. The frequency of $CD103^+$ regulatory T cells was considerably decreased in $PLZF^+$ cell-deficient $CIITA^{Tg}Plzf^{lu/lu}$ and $BALB/c.CD1d^{-/-}$ mice as well as in an IL-4-deficient background, such as in $CIITA^{Tg}IL-4^{-/-}$ and $BALB/c.IL-4^{-/-}$ mice, indicating that the acquisition of an activated/ memory-like phenotype was dependent on $PLZF^+$ innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-${\beta}$ enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/ memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of $CIITA^{Tg}PIV^{-/-}$ mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that $PLZF^+$ innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production.
Keywords
IL-4; PLZF; regulatory T lymphocyte;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alonzo, E.S., and Sant' Angelo, D.B. (2011). Development of PLZF-expressing innate T cells. Curr. Opin. Immunol. 23, 220-227.   DOI
2 Annacker, O., Coombes, J.L., Malmstrom, V., Uhlig, H.H., Bourne, T., Johansson-Lindbom, B., Agace, W.W., Parker, C.M., and Powrie, F. (2005). Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 202, 1051-1061.   DOI
3 Banz, A., Peixoto, A., Pontoux, C., Cordier, C., Rocha, B., and Papiernik, M. (2003). A unique subpopulation of $CD4^+$ regulatory T cells controls wasting disease, IL-10 secretion and T cell homeostasis. Eur. J. Immunol. 33, 2419-2428.   DOI
4 Bayer, A.L., Yu, A.X., and Malek, T.R. (2007). Function of the IL-2R for thymic and peripheral $CD4^+CD25^+$ $Foxp3^+$ T regulatory cells. J. Immunol. 178, 4062-4071.   DOI
5 Bird, L. (2010). Regulatory T cells nurtured by TGF${\beta}$. Nat. Rev. Immunol. 10, 466-466.
6 Burchill, M.A., Yang, J.Y., Vogtenhuber, C., Blazar, B.R., and Farrar, M.A. (2007). IL-2 receptor ${\beta}$-dependent STAT5 activation is required for the development of $Foxp3^+$ regulatory T cells. J. Immunol. 178, 280-290.   DOI
7 Chang, L.Y., Lin, Y.C., Kang, C.W., Hsu, C.Y., Chu, Y.Y., Huang, C.T., Day, Y.J., Chen, T.C., Yeh, C.T., and Lin, C.Y. (2012). The indispensable role of CCR5 for in vivo suppressor function of tumor-derived $CD103^+$ effector/memory regulatory T cells. J. Immunol. 189, 567-574.   DOI
8 Choi, E.Y., Park, W.S., Jung, K.C., Chung, D.H., Bae, Y.M., Kim, T.J., Song, H.G., Kim, S.H., Ham, D.I., and Hahn, J.H. et al. (1997). Thymocytes positively select thymocytes in human system. Hum. Immunol. 54, 15-20.   DOI
9 Choi, E.Y., Jung, K.C., Park, H.J., Chung, D.H., Song, J.S., Yang, S.D., Simpson, E., and Park, S.H. (2005). Thymocyte-thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23, 387-396.   DOI
10 Collison, L.W., and Vignali, D.A. (2011). In vitro Treg suppression assays. Methods Mol. Biol. 707, 21-37.   DOI
11 Dardalhon, V., Awasthi, A., Kwon, H., Galileos, G., Gao, W., Sobel, R.A., Mitsdoerffer, M., Strom, T.B., Elyaman, W., and Ho, I.C., et al. (2008). IL-4 inhibits TGF-${\beta}$-induced $Foxp3^+$ T cells and, together with TGF-${\beta}$, generates IL-$9^+$ IL-$10^+$ $Foxp3^-$ effector T cells. Nat. Immunol. 9, 1347-1355.   DOI
12 El-Asady, R., Yuan, R., Liu, K., Wang, D., Gress, R.E., Lucas, P.J., Drachenberg, C.B., and Hadley, G.A. (2005). TGF-${\beta}$-dependent CD103 expression by $CD8^+$ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647-1657.   DOI
13 Faustino, L., da Fonseca, D.M., Takenaka, M.C., Mirotti, L., Florsheim, E.B., Guereschi, M.G., Silva, J.S., Basso, A.S., and Russo, M. (2013). Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation. J. Immunol. 190, 2614-2621.   DOI
14 Gottschalk, R.A., Corse, E., and Allison, J.P. (2010). TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J. Exp. Med. 207, 1701-1711.   DOI
15 Grueter, B., Petter, M., Egawa, T., Laule-Kilian, K., Aldrian, C.J., Wuerch, A., Ludwig, Y., Fukuyama, H., Wardemann, H., and Waldschuetz, R., et al. (2005) Runx3 regulates integrin ${\alpha}_E$/CD103 and CD4 expression during development of $CD4^-$/$CD8^+$ T cells. J. Immunol. 175, 1694-1705.   DOI
16 Hadley, G.A., Rostapshova, E.A., Gomolka, D.M., Taylor, B.M., Bartlett, S.T., Drachenberg, C.I., and Weir, M.R. (1999). Regulation of the epithelial cell-specific integrin, CD103, by human $CD8^+$ cytolytic T lymphocytes. Transplantation. 67, 1418-1425.   DOI
17 Kang, B.H., Park, H.J., Yum, H.I., Park, S.P., Park, J.K., Kang, E.H., Lee, J.I., Lee, E.B., Park, C.G., and Jung, K.C., et al. (2015b). Thymic low affinity/avidity interaction selects natural Th1 cells. J. Immunol. 194, 5861-5871.   DOI
18 Horwitz, D.A., Zheng, S.G., and Gray, J.D. (2008). Natural and TGF-${\beta}$-induced $Foxp3^+CD4^+$ $CD25^+$ regulatory T cells are not mirror images of each other. Trends Immunol. 29, 429-435.   DOI
19 Huehn, J., Siegmund, K., Lehmann, J.C., Siewert, C., Haubold, U., Feuerer, M., Debes, G.F., Lauber, J, Frey, O, and Przybylski, G.K. (2004). Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like $CD4^+$ regulatory T cells. J. Exp. Med. 199, 303-313.   DOI
20 Kang, B.H., Min, H.S., Lee, Y.J., Choi, B., Kim, E.J., Lee, J., Kim, J.R., Cho, K.H., Kim, T.J., and Jung, K.C., et al. (2015a). Analyses of the TCR repertoire of MHC class II-restricted innate $CD4^+$ T cells. Exp. Mol. Med. 47, e154.   DOI
21 Karecla, P.I., Bowden, S.J., Green, S.J., and Kilshaw, P.J. (1995). Recognition of E-cadherin on epithelial cells by the mucosal T cell integrin ${\alpha}$M290 ${\beta}$7 (${\alpha}E{\beta}7$). Eur. J. Immunol. 25, 852-856.   DOI
22 Kilshaw, P.J., and Murant, S.J. (1991). Expression and regulation of ${\beta}$-7 (${\beta}$-P) integrins on mouse lymphocytes: relevance to the mucosal immune system. Eur. J. Immunol. 21, 2591-2597.   DOI
23 Lai, D., Zhu, J., Wang, T., Hu-Li, J., Terabe, M., Berzofsky, J.A., Clayberger, C., and Krensky, A.M. (2011). KLF13 sustains thymic memory-like $CD8^+$ T cells in BALB/c mice by regulating IL-4-generating invariant natural killer T cells. J. Exp. Med. 208, 1093-1103.   DOI
24 Lehmann, J., Huehn, J., de la Rosa, M., Maszyna, F., Kretschmer, U., Krenn, V., Brunner, M., Scheffold, A., and Hamann, A. (2002). Expression of the integrin ${\alpha}E{\beta}7$ identifies unique subsets of $CD25^+$ as well as $CD25^-$ regulatory T cells. Proc. Natl. Acad. Sci. USA 99, 13031-13036.   DOI
25 Lee, Y.J., Jung, K.C., and Park, S.H. (2009). MHC class II-dependent T-T interactions create a diverse, functional and immunoregulatory reaction circle. Immunol. Cell. Biol. 87, 65-71.   DOI
26 Lee, Y.J., Jeon, Y.K., Kang, B.H., Chung, D.H., Park, C.G., Shin, H.Y., Jung, K.C., and Park, S.H. (2010). Generation of $PLZF^+$ $CD4^+$ T cells via MHC class II-dependent thymocyte-thymocyte interaction is a physiological process in humans. J. Exp. Med. 207, 237-246.   DOI
27 Lee, Y.J., Holzapfel, K.L., Zhu, J., Jameson, S.C., and Hogquist, K.A. (2013). Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146-1154.   DOI
28 Li, M.O., and Flavell, R.A. (2008). TGF-${\beta}$: A master of all T cell trades. Cell 134, 392-404.   DOI
29 Li, W., Kim, M.G., Gourley, T.S., McCarthy, B.P., Sant'Angelo, D.B., and Chang, C.H. (2005). An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23, 375-386.   DOI
30 Li, W., Sofi, M.H., Rietdijk, S., Wang, N., Terhorst, C., and Chang, C.H. (2007). The SLAM-Associated protein signaling pathway is required for development of $CD4^+$ T cells selected by homotypic thymocyte interaction. Immunity 27, 763-774.   DOI
31 Lio, C.W., and Hsieh, C.S. (2008). A two-step process for thymic regulatory T cell development. Immunity 28, 100-111.   DOI
32 McHugh, R.S., Whitters, M.J., Piccirillo, C.A., Young, D.A., Shevach, E.M., Collins, M., and Byrne, M.C. (2002). $CD4^+CD25^+$ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311-323.   DOI
33 Liu, Y., Zhang, P., Li, J., Kulkarni, A.B., Perruche, S., and Chen, W. (2008). A critical function for TGF-${\beta}$ signaling in the development of natural $CD4^+CD25^+Foxp3^+$ regulatory T cells. Nat. Immunol. 9, 632-640.   DOI
34 Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., Vega-Ramos, J., Lauzurica, P., Mueller, S.N., and Stefanovic, T., et al. (2013). The developmental pathway for $CD103^+CD8^+$ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294-1301.   DOI
35 Maerten, P., Shen, C., Bullens, D.M., Van Assche, G., Van Gool, S., Geboes, K., Rutgeerts, P., and Ceuppens, J.L. (2005). Effects of interleukin 4 on $CD25^+$$CD4^+$ regulatory T cell function. J. Auto-immun. 25, 112-120.
36 Min, H.S., Lee, Y.J., Jeon, Y.K., Kim, E.J., Kang, B.H., Jung, K.C., Chang, C.H., and Park, S.H. (2011). MHC Class II-restricted interaction between thymocytes plays an essential role in the production of innate $CD8^+$ T Cells. J. Immunol. 186, 5749-5757.   DOI
37 Ouyang, W., Beckett, O., Ma, Q., and Li, M.O. (2010). Transforming growth factor-${\beta}$ signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642-653.   DOI
38 Park, S.H., Bae, Y.M., Kim, T.J., Ha, I.S., Kim, S., Chi, J.G., and Lee, S.K. (1992). HLA-DR expression in human fetal thymocytes. Hum. Immunol. 33, 294-298.   DOI
39 Prince, A.L., Kraus, Z., Carty, S.A., Ng, C., Yin, C.C., Jordan, M.S., Schwartzberg, P.L., and Berg, L.J. (2014a). Alonzo, E.S., and Sant'Angelo, D.B. (2011). Development of PLZF-expressing innateT cells. Curr. Opin. Immunol. 23, 220-227.
40 Park, J.H., Adoro, S., Guinter, T., Erman, B., Alag, A.S., Catalfamo, M., Kimura, M.Y., Cui, Y., Lucas, P.J., and Gress, R.E., et al. (2010). Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257-264.   DOI
41 Prince, A.L., Watkin, L.B., Yin, C.C., Selin, L.K., Kang, J., Schwartzberg, P.L., and Berg, L.J. (2014b). Innate $PLZF^+CD4^+$ ${\alpha}{\beta}$ T cells develop and expand in the absence of Itk. J. Immunol. 193, 673-687.   DOI
42 Rao, P.E., Petrone, A.L., and Ponath, P.D. (2005). Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-${\beta}$. J. Immunol. 174, 1446-1455.   DOI
43 Robertson, H., Wong, W.K., Talbot, D., Burt, A.D., and Kirby, J.A. (2001). Tubulitis after renal transplantation: demonstration of an association between $CD103^+$ T cells, transforming growth factor ${\beta}$1 expression and rejection grade. Transplantation 71, 306-313.   DOI
44 Saito, K., Torii, M., Ma, N., Tsuchiya, T., Wang, L., Hori, T., Nagakubo, D., Nitta, N., Kanegasaki, S., and Hieshima, K. (2008). Differential regulatory function of resting and preactivated allergen-specific $CD4^+$ $CD25^+$ regulatory T cells in Th2-type airway inflammation. J. Immunol. 181, 6889-6897.   DOI
45 Treiner, E., and Lantz, O. (2006). CD1d- and MR1-restricted invariant T cells: of mice and men. Curr. Opin. Immunol. 18, 519-526.   DOI
46 Siewert, C., Lauer, U., Cording, S., Bopp, T., Schmitt, E., Hamann, A., and Huehn, J. (2008). Experience-driven development: effector/memory-like ${{\alpha}_E}^+Foxp3^+$ regulatory T cells originate from both naive T cells and naturally occurring naive-like regulatory T cells. J. Immunol. 180, 146-155.   DOI
47 Skapenko, A., Kalden, J.R., Lipsky, P.E., and Schulze-Koops, H. (2005). The IL-4 receptor ${\alpha}$-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing $CD25^+CD4^+$ regulatory T cells from $CD25^-CD4^+$ precursors. J. Immunol. 775, 6107-6116.
48 Stephens, G.L., Andersson, J., and Shevach, E.M. (2007). Distinct subsets of $Foxp3^+$ regulatory T cells participate in the control of immune responses. J. Immunol. 178, 6901-6911.   DOI
49 Vignali, D.A.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat. Rev. Immunol. 8, 523-532.   DOI
50 Wang, D., Yuan, R., Feng, Y., El-Asady, R., Farber, D.L., Gress, R.E., Lucas, P.J., and Hadley, G.A. (2004). Regulation of CD103 expression by $CD8^+$ T cells responding to renal allografts. J. Immunol. 172, 214-221.   DOI
51 Wei, J., Duramad, O., Perng, O.A., Reiner, S.L., Liu, Y.J., and Qin, F.X. (2007). Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of $Foxp3^+$ regulatory T cells. Proc. Nat'l. Acad. Sci. USA 104, 18169-18174.   DOI
52 Weinreich, M.A., Odumade, O.A., Jameson, S.C., and Hogquist, K.A. (2010). T cells expressing the transcription factor PLZF regulate the development of memory-like $CD8^+$ T cells. Nat. Immunol. 11, 709-716.   DOI
53 Zhao, D., Zhang, C., Yi, T., Lin, C.L., Todorov, I., Kandeel, F., Forman, S., and Zeng, D. (2008). In vivo-activated $CD103^+CD4^+$ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood 112, 2129-2138.   DOI