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Dendritic cells (DCs) are considered to play major roles 

during the induction of T cell immune responses as well as 

the maintenance of T cell tolerance. Naive CD4
＋

 T cells 

have been shown to respond with high plasticity to signals 

inducing their polarization into effector/helper or regu-

latory T cells. Data obtained from in vitro generated bone- 

marrow (BM)-derived DCs as well as genetic mouse mod-

els revealed an important but not exclusive role of DCs in 

shaping CD4
＋

 T cell responses. Besides the specialization 

of some conventional DC subsets for the induction of po-

larized immunity, also the maturation stage, activation of 

specialized transcription factors and the cytokine pro-

duction of DCs have major impact on CD4
＋

 T cells. Since 

in vitro generated BM-DCs show a high diversity to shape 

CD4
＋

 T cells and their high similarity to monocyte-de-

rived DCs in vivo, this review reports data mainly on 

BM-DCs in this process and only touches the roles of tran-

scription factors or of DC subsets, which have been dis-

cussed elsewhere. Here, recent findings on 1) the con-

version of naive into anergic and further into Foxp3
−

 regu-

latory T cells (Treg) by immature DCs, 2) the role of RelB 

in steady state migratory DCs (ssmDCs) for conversion of 

naive T cells into Foxp3
＋

 Treg, 3) the DC maturation sig-

nature for polarized Th2 cell induction and 4) the DC 

source of IL-12 for Th1 induction are discussed.

[Immune Network 2016;16(1):13-25]
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INTRODUCTION

Adaptive immune responses are characterized by the acti-

vation and differentiation of CD4
＋

 T cells into distinct ef-

fector T helper (Th) cell subsets but also induced regu-

latory T cells (iTregs). The latter support pre-existing thy-

mus-derived, natural regulatory T cells (nTregs) to allow 

but at the same time also control the effector cell responses 

against pathogens and prevent autoreactive T cells from 

autoimmune attack. While effector CD4
＋

 T cell responses 

are characterized by the polarization of naive T cells into 

Th1, Th2, Th9 or Th17 subsets, iTregs of either Foxp3
＋

 

or Foxp3
−

 IL-10
＋

 (Tr1) subtypes can be polarized from 

either naive T cells or already polarized effector Th1 or 

Th2 cells (1-3). 

  It appears that repetitive stimulation of CD4
＋

 Th1 or 

Th2 cell leads to a loss of their effector cytokine pro-

duction but an increase and finally dominance of IL-10 re-

lease as shown in mice (1) but also with cultured human 

T cell clones (4). The induction of Th17 effector or Foxp3
＋

 

iTregs from naive T cells has been described to depend 

on specific cytokines. While IL-6 is necessary for gen-

eration of both T cell phenotypes, TGF-β plays a pivotal 
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Figure 1. Induction of CD4
＋

 T cell anergy, Treg subsets and 
polarized Th1/Th2 responses by DC can be directed by their 
maturation stages and cytokines. Immature DCs induce antigen- 
specific T cell anergy in naive T cells in the absence of TGF-β, 
but induce Foxp3

＋
 iTregs when TGF-β is present. A second 

stimulation of non-regulatory anergized T cells by immature 
DCs generates regulatory IL-10

＋
 Tr1 cells. A similar T cell 

phenotype of regulatory IL-10
＋

 Tr1 is generated by repetitive 
stimulation with semi-mature BM-DCs generated by maturation 
with TNF or T. brucei VSG antigens characterized by a lack of 
cytokine production. A single stimulation with these DCs in the 
absence of TGF-β and IL-12 induces a Th2 phenotype that is lost 
upon repetitive stimulation. In vivo steady state migratory DCs 
(ssmDCs) resemble TNF-matured BM-DCs but capture TGF-β
on their surface, thereby inducing naive T cell conversion into 
Foxp3

＋
 iTreg specific for self-antigens. DCs matured with high 

doses of LPS or CgG oligonucleotides reach a full maturation 
stage characterized by cytokine release including IL-12p70 that 
leads to Th1 induction. 

role in generating Foxp3
＋

 iTregs while in its absence 

Th17 cell development is observed (5). However, it re-

mains unclear which type of DCs and DC-derived factors 

would induce all of these tolerogenic (Foxp3
＋

 iTregs or 

Foxp3
−

 IL-10
＋

 Tr1 cells) or immunogenic T cell polar-

ization programs (Th1, Th2 and Th17 cells). While recent 

efforts concentrated on the role of conventional DC sub-

sets and their transcription factors for CD4
＋

 T cell polar-

ization (6-8), not much has been investigated on the DC 

phenotype or maturation stage such as non-migratory im-

mature or migratory semi-mature or migratory fully mature 

DCs. Since quantitative aspects of T cell stimulation like 

peptide concentrations, TCR signal intensity or quality and 

quantity of costimulation play considerable roles for Th 

polarization (9,10), we believe that studying DC maturity 

may also help to contribute to the understanding of this 

aspect in Th cell polarization (11) and regulatory T cell 

induction (3). The strength of DC maturity/activation, rep-

resented by the surface expression of MHC and diverse 

costimulatory molecules as well as cytokines (12), will al-

so be translated into the strength of T cell stimulation (13). 

  For the priming of Th cells in vivo DCs play a central 

role due to their antigen presentation capacity together 

with highly expressed costimulatory molecules and the 

production of pro-inflammatory cytokines. One additional 

key feature of DCs is their migratory capacity from in-

fection sites to the draining lymph nodes. DC migration 

requires coordinate mechanisms of soluble and matrix-as-

sociated CCL19 and CCL21 chemokines recognized by the 

receptor CCR7 (14,15). Antigen capture and migration of 

blood DCs into lymphoid organs has been observed during 

immune responses but is less well understood (16). Under 

inflammatory conditions, monocyte-derived DCs infiltrat-

ing into atherosclerotic plaques may direct i/nTreg ex-

pansion by secretion of CCL17 chemokine (17). Since 

CCR7-dependent migration of DCs also occurs under 

steady state conditions (14), the question remained whether 

in mice such ssmDCs induce tolerance in naive CD4
＋

 T 

cells by inducing anergy, as observed in vitro (18), or in-

duce deletion, as observed for CD8
＋

 T cells (19), or by 

converting the naive cells into iTregs. 

  For the latter it remained to be determined, whether i) 

Foxp3
＋

 iTregs would be induced as shown by using an 

osmotic mini-pump system (20) or whether Tr1 cells 

would result by employing endogenous tolerizing mi-

gratory DCs in an asthma model found by others (21) or 

as we observed by adoptive transfer of TNF-matured DCs 

in the experimental autoimmune encephalomyelitis (EAE) 

model (22). Finally, the question remained whether anergic 

T cells were stably anergic and non-suppressive or whether 

certain DC-derived signals may further polarize them into 

another phenotype such as Tregs.

  Our lab addressed these topics mainly by using BM-DCs 

generated with GM-CSF (23) (Fig. 1) where immature and 

mature stages can be easily generated in contrast to ex vivo 

isolated spleen DCs or the in vivo-counterpart of BM-DCs 

which are inflammatory monocyte-derived DCs (24,25). 
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Since the impact of DC maturity, expression of cos-

timulatory molecules and of IL-10 production on the in-

duction of CD4
＋

 Treg has been reviewed recently (3), we 

will not further elucidate on this topic here. 

CONVERSION OF NAIVE INTO ANERGIC AND 

FURTHER INTO Foxp3
−

 Tr1 CELLS BY 

IMMATURE DCs

T cell tolerance mechanisms include intrinsic and extrinsic 

mechanisms. Intrinsic control of T cells includes the in-

duction of T cell anergy and T cell deletion, while ex-

trinsic control is mediated by the activity of regulatory T 

cells (Tregs). The active role of Tregs for extrinsic T cell 

tolerance has been widely studied and also the result of 

T cell deletion appears obvious. In contrast, although the 

molecular details, how anergy is induced and maintained 

is increasingly understood (26,27), an active functional 

role for anergic T cells for tolerance or any other useful-

ness for maintaining such cells in the immune system had 

not been described. 

  The term clonal anergy was used to define a specific 

functional unresponsive state of CD4
＋

 T lymphocytes 

(initially characterized in Th1 T cell clones, i.e. previously 

activated T cells) achieved by a strong TCR/CD3 signal 

1 in the absence of CD28 costimulation as a signal 2 

(28,29). Although a variety of experimental approaches 

have been used to induce T cell anergy in vitro, the most 

consistent hallmarks are defective IL-2 production and 

lack of proliferation upon TCR/CD3-mediated restim-

ulation even in the presence of costimulation (29-31). 

  The phenotype of clonal T cell anergy can be reversed 

by addition of exogenous IL-2 and CD4
＋

 T cell clones 

express high-affinity IL-2 receptors (IL-2R) (29). Reversal 

of CD4
＋

 T cell anergy can also be performed by exposure 

to polyclonal stimuli circumventing TCR signaling by 

phorbol 12-myristate 13-acetate (PMA) and the calcium 

ionophores. However, in contrast to antigen-experienced T 

cell clones, naive CD4
＋

 T cells have been reported to be 

resistant to anergy induction in vivo as well as in vitro 

upon TCR/CD3 stimulation alone in the absence of any 

secondary signals or costimulation (32). 

  Indeed, naive CD4
＋

 T cells appear to be dependent on 

B7 costimulation-driven CTLA-4 engagement for anergy 

induction (33). CTLA-4 expression is obligatory for toler-

ance induction in vivo, also termed adaptive tolerance (29). 

This was observed in studies using T cells derived from 

CTLA-4
−/−

 mice or antibody-mediated blocking experi-

ments (34,35). The exact role and signaling mechanisms 

of CTLA-4 for the induction of T cell anergy is still a 

matter of debate (36). Earlier reports suggested that 

CTLA-4 signaling prevents cell cycle progression through 

regulation of the cyclin-dependent kinase (cdk) inhibitors 

p27
Kip1

 and p21
Cip1

 (34,37), although this may not be a 

strict requirement (38). Engagement of CTLA-4 has also 

been shown to block IL-2 production and IL-2R ex-

pression at least in part through decreased NFAT trans-

location to the nucleus (37,39,40). 

  Conversely, anergy induction in antigen-experienced T 

cells can be induced by Ca
2＋

/calcineurin-dependent signal-

ing through ionomycin only, thereby triggering downstream 

NFATc2 but not its transcriptional binding partner AP-1 

(31,41,42). An NFAT-dependent transcriptional program 

inducing various anergy-associated genes was identified, 

which crucially contribute to anergy induction in vitro and 

in vivo (31,41,43-45). Several analyses revealed a dominant 

role for the early growth response genes 2 (Egr2) and Egr-3 

as markers of clonal T cell anergy in vitro and murine aner-

gy models (46-50). Interestingly, Egr-2 has been reported 

also to support tolerogenic functions in DCs (51). 

  After anergy induction the question remains which func-

tional role anergic T cells might have since they appear 

to persist in vivo for relatively long periods of time and 

can potentially reverse their functional unresponsive state 

(49,52). It was found that anergic T cells acquire the abil-

ity to produce anti-inflammatory cytokines such as IL-10 

and suppress naive T cell responses (53-55). However, 

which signaling pathways or DC-derived instructive mole-

cules are needed to induce IL-10 and regulatory function 

in anergic T cells remains unknown so far. 

  T cell anergy induction can be achieved by antigen pre-

sentation from immature DCs (12), similar to the gen-

eration of Foxp3
＋

 Tregs (3) (Fig. 1). Using human mono-

cyte-derived DCs we could show previously that naive al-

logeneic T cells required two rounds of stimulation in vitro 

to become anergic but without the capacity to release 

IL-10 or suppressing other T cell responses (18). This may 

be explained by the source of T cells used for the experi-

ments, i.e. human peripheral blood versus murine lym-

phoid organs. Thus, while murine T cells receive tonic 

TCR signals in lymhoid organs increasing their responsive-

ness to secondary TCR engagements, this tonic activation 
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state is shut off in human blood T cells an may require 

restoration before these T cells are fully functional (56). 

A single intravenous injection of soluble antigens induced 

T cell anergy as observed initially by neo-self antigen ex-

pression or superantigen injection (57-60) or more recently 

in peptide-specific systems (61). Anergy induction and 

subsequent IL-10 production have been observed by these 

anergic T cells after repetitive intravenous injections of 

peptides, most likely captured and presented by immature 

DCs in this setting (62). However, the molecular require-

ments for an anergy-to-Tr1 switch had not been described. 

  To answer the latter question, we used immature BM- 

DCs to induce T cell anergy in vitro. We stimulated naive 

TCR-transgenic CD4
＋

 CD25
−

 OT-II T cells with im-

mature DCs in the presence of OVA peptide antigen in 

vitro. In the absence of TGF-β the induction of Foxp3
＋

 

iTregs could not be observed. Instead a single stimulation 

with immature DCs resulted in anergic, non-regulatory 

Egr2
＋

 IL-10
−

 CTLA-4
＋

 CD25
low

 T cells. Of note, im-

mature DCs were superior in CTLA-4 induction as com-

pared to mature DCs. A second stimulation of the aner-

gized T cells with immature DCs thus triggered CD28 and 

CTLA-4 and by using blocking antibody Fab fragments 

our data indicate that both simultaneous signals are re-

quired to convert the anergic cells into regulatory T cells. 

The resulting population resembled Tr1 cells since they ap-

peared as proliferating Egr2
＋

 IL-10
＋

 CTLA-4
＋

 CD25
high

 

cells with regulatory capacity. Suppressor activity was fa-

cilitated by highly effective IL-2 deprivation, enabled 

through CD28-mediated CD25 upregulation and the simul-

taneous CTLA4-mediated inhibition of nuclear trans-

location of NFATc1 and block of IL-2 production. Thus, 

Tr1 cells proliferated at the expense of IL-2 produced by 

effector T cells without producing IL-2 themselves. To-

gether, two rounds of antigen-specific stimulation of naive 

T cells by immature DCs providing moderate CD80/CD86 

signals in the absence of TGF-β induce IL-10
＋

 Tr1 cells 

(63). This notion adds to the current opinion that Tr1 cells 

can be generated from repetitively stimulated Th1 or Th2 

cells (1,22) as mentioned above but also from anergic T 

cells, however by different types of DCs (Fig. 1).

CONVERSION OF NAIVE CD4
＋

 T CELLS INTO 

Foxp3
＋

 iTregs BY RelB
＋

 ssm DCs

In addition to their role in pathogen defense, migratory 

dendritic cells (DCs) are also critical for maintaining toler-

ance to self-antigens (64). Although the etiology of most 

autoimmune diseases remains obscure, abundant progress 

in this field has been made. It is now clear that immature 

DCs have tolerogenic properties by inducing T cell anergy 

or Tregs in vitro and in vivo (3). Especially the identi-

fication and characterization of Tregs has opened a new 

area of research, which promises to acquire sufficient 

knowledge for the development of new strategies against 

autoimmunity (65). To promote antigen-specific tolerance, 

DCs must capture, process and present self-antigens in a 

“steady state” phenotype within lymphoid tissues. This can 

occur either by lymph node resident immature DCs that 

capture soluble antigens through the lymph node reticular 

conduit system (66) and thus may induce T cell deletion, 

anergy or Tregs. In addition, also ssmDC display a parti-

ally mature (semi-mature) phenotype (Fig. 1, ssmDCs). 

They express CCR7 to migrate and transport self-antigens 

from peripheral organs such as the skin to the draining 

lymph nodes under homeostatic conditions (12). A murine 

transgenic model expressing OVA as a neo-self-antigen in 

the epidermis (K5-mOVA) showed that this antigen is car-

ried by ssmDCs displaying a semi-mature phenotype and 

is then cross-presented for CD8
＋

 T cell deletion or de no-

vo conversion of naive CD4
＋

 T cells into Foxp3
＋

 Tregs 

(19,67). 

  The question remained which transcription factor in DCs 

would force them to induce iTregs in vivo when self-anti-

gens are presented by ssmDCs under physiological con-

ditions. Members of the NF-kB family such as RelA, RelB 

and c-Rel have been associated with inflammation or im-

munogenicity for many cell types (68). However, the func-

tional role of these molecules in tolerogenic DCs is not 

fully understood. Tolerance to self-antigens expressed in 

peripheral organs is maintained by CD4
＋

 CD25
＋

 Foxp3
＋

 

Tregs, which are generated as a result of thymic selection 

(nTregs) or peripheral induction (iTregs). We demon-

strated that ssmDCs from the skin mediated iTreg con-

version in draining lymph nodes of mice. These DCs dis-

played a partially mature MHC II
int

 CD86
int

 CD40
hi
 CCR7

＋
 

phenotype, used endogenous TGF-β/latency-associated 

peptide (LAP) complexes for conversion of naive T cells 

into Foxp3
＋

 iTregs and showed nuclear RelB translo-

cation. Heterozygous deficiency of the alternative NF-κB 

signaling pathway (RelB/p52) reduced steady state migra-

tion of DCs. These DCs transported and directly presented 
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soluble OVA provided by subcutaneously implanted os-

motic mini-pumps, as well as cell-associated epidermal 

OVA in transgenic K5-mOVA mice to CD4
＋

 OVA-specif-

ic TCR-transgenic OT-II T cells. The Langerin
＋

 dermal 

DCs subset, but not epidermal Langerhans cells, mediated 

conversion of naive OT-II x RAG-1
−/−

 T cells into pro-

liferating CD4
＋

 CD25
＋

 Foxp3
＋

 Tregs. Thus, these data 

showed that Langerin
＋

 dermal ssmDCs mediate peripheral 

iTreg conversion for epidermal self-antigen in skin-drain-

ing lymph nodes via RelB and TGF-β (67,69,70). Of note, 

homozygous RelB
−/−

 mice lack peripheral lymph nodes 

(71), which does not allow to study ssmDCs in these mice 

and the results we obtained from heterozygous RelB
＋/−

 

(67) mice may still involve indirect effects from other cell 

types. However, the efficient conversion of CD4
＋

 T cells 

to Foxp3
＋

 iTreg by Langerin
＋

 ssmDCs was corroborated 

by antibody-mediated specific targeting of the self-antigen 

myelin oligodendrocyte glycoprotein (MOG) to different 

ssmDC subtypes (72). More recently, also a critical role 

for the classical NFκB pathway for ssmDCs and tolerance 

has been found as demonstrated by spontaneous develop-

ment of autoimmunity in mice with specific IKKβ defi-

ciency in CD11c
＋

 cells (73). 

  The phenotype and transcriptional signature of TNF-ma-

tured BM-DCs generated with GM-CSF in vitro is highly 

similar as compared to ssmDCs from peripheral skin-drain-

ing lymph nodes. Both types show only a moderate to high 

expression of MHC II and costimulatory with the complete 

absence of detectable cytokine production, but with the ex-

ception to express LAP on their cell surface, which cap-

tures TGF-β to store it in its inactive form. Whether 

ssmDCs produce TGF-β by themselves, is unclear. How-

ever, the release of active TGF-β from ssmDCs by αVβ8 

integrins is critical to maintain self-tolerance in mice (74). 

Thus, despite a similar semi-mature phenotype of TNF- 

matured BM-DC and ssmDCs these cells may be function-

ally distinguished by the capacity to provide TGF-β or not 

(Fig. 1). 

INFLAMMATORY GENE SIGNATURES IN DCs 

MARK THEIR Th2 PROGRAMMING 

CAPACITIES

Helminths and other parasites represent prototype Th2-in-

ducing pathogens. The way DCs sense type-2 pathogens 

ranges from pattern recognition receptors to tissue damage 

and to metabolic changes (75). Key factors released by 

DCs upon recognition of type-2 pathogens to instruct Th2 

cells have not been identified so far. Although IL-4 repre-

sents a key factor for development and maintenance of 

Th2 responses, this cytokine is not produced by DCs. 

Since the absence of IL-12p70 production alone may allow 

Th2 polarization, a default pathway would induce Th2 

cells. However, the failure of DCs to induce Th2 immunity 

in the absence of exogenous IL-4 produced by basophils 

does not support the concept of a default mechanism (76). 

In any case a common feature of Th2-inducing DCs is 

their semi-mature state, characterized by the up-regulation 

of antigen presenting molecules (MHC I, MHC II, CD1d) 

and costimulatory markers (CD80, CD86, CD40) on their 

surface but their lack to release polarizing cytokines such 

as IL-12p70 (Th1) or IL-6 and IL-23 (Th17) (77). 

  Is there a factor that could block full DC maturation 

while allowing partial maturation? The production of 

IL-10 by DCs has been associated with their propagation 

of Th2 immunity (78), however a clear and direct effect 

of IL-10 on naive T cell conversion to a Th2 phenotype 

is missing. IL-10 has been shown to fully block DC matu-

ration and induce anergic or regulatory T cells mostly of 

the Tr1 type (79,80). Thus, although not fully clear, it 

seems most likely that a partial activity of IL-10 would 

suppress the production of polarizing cytokines such as 

IL-12p70 in an autocrine and paracrine fashion (81,82) and 

promote Th2 development indirectly via modulation of 

DCs. Since Th1 immunity can eradicate helminths and oth-

er parasitic infections but Th2 polarization allows for their 

persistence, many helminths developed mechanisms to pro-

mote IL-10 release from macrophages, DCs and other cells 

such as regulatory T cells (83) as mechanisms of immune 

evasion. 

  In this respect, deviation into Th2 immunity seems to 

represent a mild form of pathogen-directed immune eva-

sion. When testing different developmental stages of the 

fox tape-worm Echinococcus multilocularis on BM-DCs, 

the early vulnerable stages of the larvae such as onco-

spheres and metacestodes induced more drastic forms of 

immune evasion, namely DC apoptosis or inhibition of DC 

maturation. Thereby the induction of immunity at the DC 

level is completely blocked, while the successor proto-

scolex stage that is protected by its laminated layer 

“allowed” partial maturation of DCs (84) for induction of 

Th2 immunity, similar to what has been observed for 
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Echinococcus granulosus (85). 

  Such a partial maturation profile can be observed also 

in BM-DCs after treatment with the pro-inflammatory cy-

tokine TNF or products of Trypanosoma brucei (77). The 

question remained whether DC maturation by in-

flammatory TNF is qualitatively or quantitatively different 

for maturation markers and T cell programming as com-

pared with maturation by different types of variant surface 

glycoproteins (VSGs) of Trypanosoma brucei. Microarray 

analyses revealed a common inflammatory signature of 24 

genes regulated by all stimuli. Only few differences were 

observed between TNF and two types of VSGs, although 

being endogenous and inflammatory as opposed to foreign 

and pathogen-derived. TNF and the VSGs induced similar 

partial DC maturation as marked by high MHC II, cos-

timulation and Jagged-2 expression but low cytokine pro-

files and their functional instruction of Th2 responses. In 

contrast, DC stimulation by LPS regulated almost 5000 

genes, resulted in Delta-4 and IL-12p70 induction and po-

larization towards Th1. All partially matured DC showed 

comparable effects after injection on Th2-mediated asthma 

in mice and therapeutic influences on Th1/Th17-mediated 

experimental autoimmune encephalomyelitis (EAE) with 

respect to antibody isotype switching or regulatory IL-10 

producing Tr1 induction, respectively. Full maturation by 

LPS regulated the same 24 inflammatory genes as ob-

served after treatment with TNF or VSGs; but in addition 

numerous other genes, which led to Th1 skewing. In sum, 

few genes regulated in DCs allow their Th2 polarization, 

while additional (the same plus more) genes are regulated 

in DCs inducing Th1 responses. Thereby these data add 

to the concept of quantitative determination of Th polar-

ization at the DC level (9,77). Thus, after years of search-

ing for specific DC factors directing Th2 responses, quan-

titative effects and the default concept in determining Th2 

polarization have come back into focus (2,9).

Th1 INDUCTION BY DCs AND THE SOURCES 

OF IL-12p70

The textbook knowledge suggests that IL-12 production by 

DCs directs optimal activation of polarized T helper type-1 

cell (Th1) responses (Fig. 1). The following will encourage 

to have a closer look on the published results that leave 

decisive questions open. Several unexpected findings about 

IL-12 production reward a more systematic analysis. For 

example, the typical Th2 cytokine IL-4 could enhance bac-

teria-induced IL-12 production by DCs (86,87). Also 

IL-10, well established as an immunosuppressive cytokine, 

could enhance the IL-18-mediated IFN-γ release by CD8
＋

 

T cells (88). While the three-signal-theory for differen-

tiated T cell responses has been first established for CD4
＋

 

Th1 cells (1/TCR, 2/costimulation, 3/IL-12), this could be 

clearly adapted also to CTLs (89) and IL-12 as signal 3 

is considered as one of the most critical adjuvants for tu-

mor cell killing (90). 

  The production of IL-12p70 is accepted as the critical 

event for Th1 polarization (91, 92). The cytokine is en-

coded by the two genes Il12a (p35) and Il12b (p40) result-

ing in the synthesis of a IL-12p70 disulfide-linked hetero-

dimer. Major inducers of IL-12 in DCs are pathogens trig-

gering Toll-like receptors (TLRs) (93,94). TLRs can also 

cooperate with each other to enhance IL-12 release by hu-

man (95) and mouse DCs (96). Although the IL-12-inde-

pendent Th1 induction has also been described via IL-18, 

type-I interferons or CD70 (97-99), IL-12 is considered the 

most potent Th1 inducer (100). Reversely, human DCs 

treated with PGE2 were blocked for IL-12 production and 

failed to generate Th1 responses (101). For murine DCs 

we found that dose and timing of the mast cell-derived 

PGD2 exposure of DCs are critical to exert this effect 

(102). Depending on the infection IL-12 was necessary for 

microbial elimination as in murine Leishmania major mod-

els (103) or dispensable such as in Chagas’ disease or 

mouse hepatitis virus infection (97,104). Vaccination strat-

egies against Leishmania infection using DCs from IL-12- 

deficient mice indicate that Th1 responses may rely mainly 

on IL-12 by sensitizing Langerhans cells (105). The same 

group also showed that using BM-DCs as vaccines, by-

stander IL-12 production from the recipient mice could 

compensate for the lack of DC-vaccine-derived IL-12 

(106). It is possible that DCs transmit cytokine production 

signals to other DCs, such as from migratory to lymph 

node-resident DC subtypes (107). In addition, two waves 

of DC migration into lymph nodes have been observed and 

are necessary to fully prime T cell responses (108). These 

date indicate that different migratory and lymph node-resi-

dent DC subsets may directly interact or coordinately work 

to generate polarized Th1 responses. 

  While CD8α
＋

 splenic DCs did not require other signals 

than pathogen to produce IL-12p40, macrophages needed 

an IFN-γ priming prior to the pathogen signal (109). This 
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IFN-γ priming to enable IL-12p70 release has been pro-

posed also for some DCs (110). Recently, monocyte-de-

rived DCs were found to release IL-12p40 upon entry to 

an infection site, which was dependent on NK cell-derived 

IFN-γ (111). Of note, in this study the IL-12 production 

by DCs at the infection site appeared not to depend on 

phagocytosis of pathogens, pointing to bystander effects. 

  It also became apparent the last years that early during 

Th1 development NK cell cooperation with DCs plays a 

critical role (112-114). IL-12 production by DCs stimulates 

the IFN-γ production by NK cells and in a feedback loop 

represents a major cofactor for further IL-12 production 

by DCs and macrophages. In addition, IFN-γ signaling via 

STAT1 into developing Th1 cells enhances subsequent 

IL-12 signals by inducing STAT1 and STAT4 binding to 

the promoter region of Tbx21, the gene encoding T-bet, 

which is the master transcription factor of Th1 cells (115). 

Skin infection of Leishmania major led to the recruitment 

of NK cells from the blood into lymph nodes and their 

IFN-γ production starts 9h after infection (113). Whether 

soluble IL-12 can be transported via the afferent lym-

phatics and lymph node conduit system to high endothelial 

venules (HEV) to meet T cells (116) or whether it is pro-

vided by the lymph node migratory DCs, is not known. 

  The widely accepted view about CD4
＋

 T cell activation 

and differentiation into functional subsets proposes that 

three signals from DCs are critical to induce Th1 cells. 

However, some more recent data on DCs and Th cell dif-

ferentiation indicate that this model may not be complete, 

pointing out major problems with this all-three-signals- 

from-one-DC concept.

Time points of IL-12 secretion by DCs

DCs reside at relatively high densities in epithelial tissues 

such as the skin at an immature state. Typically, microbial 

infection after skin injury will lead to pathogen uptake and 

DC maturation. One consequence of microbe-induced DC 

activation/maturation at the infection site is their subsequent 

migration to the draining lymph nodes where they process 

and present the transported antigens to T cells. This migra-

tion capacity to T cell areas of secondary lymphoid organs 

is one hallmark of DC biology as opposed to macrophages, 

which remain at the infection site to clear the microbes 

from the local environment. The chemokine receptor CCR7 

is a strict requirement for this migration, which is up-regu-

lated continuously after DC activation reaching half-max-

imal levels only after 24 hours in vitro (117), whereas DC 

immigration in draining lymph nodes of mice can be ob-

served after 8h (118). In vitro and in vivo data indicate 

that also IL-12 secretion by human monocyte-derived DCs 

and murine DCs within the spleen can be detected after 

10h or 4h, respectively (109,119). Others showed IL-12 se-

cretion by DCs into the synapse formed with T cells 5h 

after DC activation (120). Thus, after pathogen recognition, 

DCs produce IL-12 with a fast kinetics but up-regulate 

CCR7 to migrate to lymph nodes later at 24-48h, a time 

period when IL-12 release is already terminated (118). How 

can DCs then coordinate the two functions of migration 

and IL-12 secretion for Th1 induction?

Mutual exclusiveness of migration and cytokine release

Analyses of human monocyte-derived DC populations in-

dicate that mutually exclusive subsets of migratory and 

IL-12 cytokine producing cells exist in these bulk cultures 

(121). This finding was supported by our in vivo data. 

When murine in vitro generated BM-DCs were matured, 

fluorescence-labeled with CFSE and injected s.c. into 

mice, the CFSE
＋

 migratory DC which arrived in the 

lymph nodes were completely negative for intracellular cy-

tokine detection, while endogenous CFSE
−

 DCs appeared 

positive for various cytokines (107). Thus migration and 

cytokine production might not occur simultaneously in in-

dividual DCs. Experiments using IL-12p40-YFP
＋

 reporter 

mice indicated that YFP
＋

 BM-DCs were still able to mi-

grate to the draining lymph nodes after s.c. injection (116). 

This would indicate IL-12 production at the infection site 

followed by DC migration to the lymph node. Such DCs 

have been reported as “exhausted” DCs that were unable 

to prime Th1 responses but induced Th2 cells (119). The 

reverse situation, that DCs become IL-12
＋

 after migration 

to the lymph node has not been demonstrated so far. To 

achieve this, genetic manipulation leading to the ex-

pression of lymph node homing receptors in DC was nec-

essary to demonstrate their cytokine-producing and lymph 

node-homing potential (122,123). Although these genetic 

manipulations improved T cell responses, they do not con-

tribute to understand the physiological series of events 

needed for Th1 cell priming.

Time window of IL-12 susceptibility of CD4
＋

 T cells

During T cell priming an early wave of IL-12 production 

may not be detectable for T cells. After arrival of the DCs 
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in the lymph nodes, T cell priming is initiated with sub-

sequent polarization for CD4
＋

 T cells. However, at the ear-

ly time points human and mouse CD4
＋

 T cells do not ex-

press a functional IL-12R and its upregulation requires TCR 

signals (124-128). After intravenous Plasmodium injection 

into mice IL-12Rβ was upregulated only at days 3∼4 after 

infection (129). Thus, early IL-12 production may occur 

but may not elicit polarization signals in T cells at these 

early time points in the lymph node. These investigations 

on the polarization of Th1 cells further revealed that after 

initial T cell priming via TCR and CD28, TCR down-regu-

lation is required to allow IL-12R expression for IL-12- 

mediated Th1 polarization. Thus, after initial antigen-speci-

fic T cell priming the subsequent polarization signal may 

occur ideally in the absence of antigen presentation. 

  In addition, IL-12 may act on the DCs itself. IL-12 has 

been shown to induce NF-κB in DCs, DC maturation as 

well as IL-12 production (130,131). A second wave of late 

IL-12 production potentially occurs in a bystander fashion 

and may allow full differentiation of Th1 cells. 

Bystander activation

Although DCs release cytokines after pathogen contact, al-

so endogenous signals can initiate cytokine production. 

The interaction of 4-1BBL on mature DC with 4-1BB on 

co-cultured immature DCs has been shown to induce IL-12 

production by the immature DCs (132-134). 

  Mature CFSE-labeled BM-DCs injected s.c. into mice 

remained negative for intracellular cytokines when re-ana-

lyzed from the draining lymph nodes 24h later, whereas 

the endogenous lymph node-resident CD11c
＋

 DC pop-

ulation showed the production of various cytokines (107). 

It requires clarification, whether migratory DCs transmit 

bystander activation signals (e.g. via 4-1BB-L to 4-1BB) 

or secrete factors that contribute to the bystander cytokine 

production (e.g. tissue injury after DC injection). In the 

case of a bystander activation signal 4-1BB/4-1BB li-

gand/receptor trimerization is required (135) that cannot be 

detected by simple surface staining. The latter possibility 

on the role of extrinsic factors is based on the findings 

that TNF-matured DCs are neither able to produce IL-12 

themselves (22,77) nor to stimulate IL-12 via bystander ac-

tivation in vivo (136). It is also conceivable that mature 

migratory DCs simply transport and then “present” the 

pathogens itself to lymph node resident immature DCs via 

DC-DC interactions, similar as reported for presentation of 

intact antigen by migratory DCs to B cells (137,138).

  Together, the available data indicate that the common 

model on IL-12 production by DCs is not sufficient to ex-

plain all the published findings mentioned above. Despite 

a plethora of publications on IL-12 production by DCs, the 

precise mechanisms and time points of IL-12 production 

still remain elusive. A recent report may point to a unify-

ing concept. While the conventional DC subsets were 

found to promote proliferation but poor polarization, sec-

ondarily generated monocyte-derived DCs during alloge-

neic immune responses showed the reverse functions by 

promoting Th1 and Th17 polarization and suppressing T 

cell proliferation, partially by release of nitric oxide (139). 

Although the IL-12 production by DCs in this setting has 

not been tested, it is tempting to speculate that the first 

wave of T cell stimulation by conventional DCs may occur 

largely in the absence of their IL-12 production to stim-

ulate T cell proliferation whereas the second wave of in-

flammation-induced monocyte-derived DCs may release 

IL-12 to polarize T cells into Th1.
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